
MAT4250 fall 2018: Algebraic number theory

(with a view toward arithmetic geometry)

H̊akon Kolderup

Welcome to MAT4250, a course on algebraic number theory. This fall we aim to cover the
basic concepts and results of algebraic number theory, as well as giving a first taste of arithmetic
geometry by proving the arithmetic Riemann–Roch theorem. Exercises will be provided roughly
at a biweekly basis. The prerequisite for this course is (an equivalent of) MAT4200 – Commutative
Algebra.

In order to give an idea of what algebraic number theory is about, let us proceed with a short
informal discussion on the history of the subject, some of its aims, and a few of its central results.
Most of the stated results will be proved later in the lectures. Keeping the “view toward arithmetic
geometry” in mind, we will also provide a few remarks on the connection between number theory
and geometry. These remarks are not necessary in order to understand the material, so those
who are unfamiliar with algebraic geometry may safely ignore them. On the other hand, if you
do know some algebraic geometry, the geometric remarks provide a small hint on the extent to
which Grothendieck’s algebraic geometry unifies number theory and geometry.

1 What is algebraic number theory?

In order to answer this question, let us start by investingating the roots of the subject. Algebraic
number theory can be traced back to the third century ad in which the Greek mathematician
Diophantus of Alexandria made significant contributions to the study of integer solutions to
algebraic equations. Almost 2000 years later this particular problem still bears Diophantus’ name:
indeed, a polynomial equation of the form

f(x1, . . . , xn) = 0,

where f ∈ Z[X1, . . . , Xn], and where we require that (x1, . . . , xn) ∈ Zn, is called a Diophantine
equation. For example, the problem of finding all Pythagorean triples (that is, all right triangles
with integer side lengths) precisely asks for the solutions of the Diophantine equation x2 +y2 = z2.
To this particular equation there are infinitely many solutions (x, y, z) = (p2 − q2, 2pq, p2 + q2),
as was known already to Euclid. More generally, in the 17th century, Pierre de Fermat undertook
the study of the Diophantine equation

xn + yn = zn, (1)

for n ≥ 1 a natural number. He stated his famous “Fermat’s Last Theorem”, namely that once n
is larger than 2, this Diophantine equation has no (nontrivial) solutions. The case n = 4 was
certainly known to Fermat, but his infamous proof of the general case for which “the margin was
too narrow” is widely believed to be nonexistent. Indeed, it took over 300 years and the collective
contributions of several outstanding mathematicians before the British mathematician Andrew
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Wiles in 1994 finally settled the Diophantine problem posed by Fermat. Wiles’ solution to the
problem—for which he was awarded the Abel price in 2016—heavily exploits the underlying
geometry of the Diophantine equation. Very roughly speaking, a solution to (1) for n > 2 is
known to give rise to an elliptic curve with very special properties—in fact, so special that Wiles
could prove that such elliptic curves cannot exist.

1.1 Factorization in Z and other rings of integers

The fundamental theorem of arithmetic states that every nonzero integer n can be factored into a
product of primes,

n = ±p1 · · · pm,
and that this factorization is unique; that is, if n = ±q1 · · · qr is another factorization, then m = r
and we may reorder the qi’s such that pi = ±qi for each i. In other words, the primes occuring in
the factorization of n are unique up to ordering and unit multiples.

At the Paris Academy the French mathematician Gabriel Lamé announced in 1847 a proposed
proof of Fermat’s Last Theorem. The basic idea was to factor the polynomial Xp + Y p, for p an
odd prime, using p-th roots of unity. More precisely, if ζ denotes a primitive p-th root of unity,
we have the factorization

Xp + Y p = (X + Y )(X + ζY ) · · · (X + ζp−1Y )

in the ring Z[ζ]. Hence a solution (x, y, z) to Fermat’s equation would satisfy

p−1∏
j=0

(x+ ζjy) = zp.

Lamé then continued to show that all the terms x+ ζjy are relatively prime. Since the product
equals zp, it follows that all the terms must be p-th powers. From this Lamé could derive a
contradiction.

The flaw in Lamé’s argument was that it relies on the assumption that unique factorization—as
we have in Z—also holds for the ring Z[ζ]. This is not true: starting with p = 23, the analogue of
the fundamental theorem of arithmetic no longer holds in the ring Z[ζ23] (and in a certain sense,
as p increases it only gets worse from here). This leads to the following fundamental question:

Question 1.1. For which rings of integers do we have unique factorization?

One of the basic goals of algebraic number theory is to answer this question. However, before
even attempting to give an answer, we must specify what we mean by “rings of integers”. By
what we have seen above, this notion should at least contain all the rings Z[ζn], for ζn an n-th
root of unity. Now, all the roots of unity ζn share the property that they are roots of polynomials
of the form Xn−1, i.e., monic polynomials with integral coefficients. In other words, ζn is integral
over Z. So an element of some “ring of integers” should be something that is integral over Z. A
nice way to obtain such elements is to start with an algebraic field extension K/Q of the rational
numbers, and then consider the integral closure A of Z in K. This situation is so common in
algebraic number theory that both the ring A and the field K are given names of their own:

Definition 1.2. An algebraic number field is a finite field extension K of the field Q of rational
numbers, contained in the complex numbers C. The ring of integers in K, commonly denoted
OK , 1 is the integral closure of Z in K.

1The “O” in the notation OK goes back to Dedekind, and stands for the German word ordnung. The notation
reflects the fact that the ring OK is an order in the sense of commutative algebra.
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It was Richard Dedekind who abstracted the common features shared by all the rings OK for
varying number fields K, allowing for a proper generalization of the notion of “rings of integers”.
Nowadays, these objects go under the name Dedekind rings:

Definition 1.3. A Dedekind ring is a noetherian, integrally closed integral domain of Krull
dimension 1.

Dedekind rings are the fundamental objects of study in algebraic number theory. Of course,
we have the following result that ensures that the notion of a Dedekind ring generalizes the above
situation of rings of integers in number fields:

Proposition 1.4 ([Neu99, I Theorem 3.1]). Let A be a Dedekind ring with field of fractions K.
Suppose that L is a finite field extension of K and let B be the integral closure of A in L. Then
B is a Dedekind ring.

Remark 1.5. Geometrically, the condition for a ring A to be a Dedekind ring means that
X := SpecA is a nonsingular affine curve. Indeed, if x ∈ X is a closed point, then OX,x is a dvr
if and only if OX,x is integrally closed (see, e.g., [AM69, Proposition 9.2]), and being integrally
closed is a local property.

Example 1.6. The following rings are Dedekind:

Z; Z[
√
−1]; Z[ζp]; Z[

√
3]; Z

[
1 +
√

5

2

]
; R[x, y]/(x2 + y2 − 1).

On the other hand, Z[
√

5] and C[x, y]/(x2−y3) are examples of 1-dimensional noetherian integral
domains that are not Dedekind rings. Indeed, they are not integrally closed (or, equivalently,
they are the coordinate rings of singular curves).

Exercise 1.7. Let d be a squarefree integer. Show that the integral closure of Z in Q(
√
d) is

• Z[
√
d] if d 6≡ 1 (mod 4);

• Z
[
1+
√
d

2

]
if d ≡ 1 (mod 4).

The following “fundamental theorem of Dedekind rings” states that an analogue of the
fundamental theorem of arithmetic (albeit for ideals) holds in any Dedekind ring:

Theorem 1.8 ([Neu99, I Corollary 3.3]). Let A be a Dedekind ring and a ⊆ A a proper ideal.
Then

a =
∏

p prime

pordp(a),

where the ordp(a)’s are uniquely determined integers.
In other words, any proper ideal in A can be written uniquely as a product of powers of prime

ideals.

Now we are ready to return to Question 1.1. As we have seen, not all of the rings Z[ζn] are
unique factorization domains. A more straightforward example is Z[

√
−5] (which is Dedekind

by Exercise 1.7), in which the element 6 admits two distinct factorizations, namely 6 = 2 · 3 =
(1 +

√
−5)(1−

√
−5).

Proposition 1.9. A Dedekind ring is a unique factorization domain if and only if it is a principal
ideal domain.
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The above proposition suggests that we can define a measure of how far a Dedekind ring A is
from being a ufd by taking the set of all ideals and modding out by the principal ideals. In order
for this to work properly (in particular, in order to obtain an abelian group rather than just a
set) we need to include a bit more than just the ideals in A:

Definition/Proposition 1.10. Let A be a Dedekind ring, with field of fractions K. A fractional
ideal2 of A is a nonzero finitely generated A-module a contained in K.

Let JK denote the set of fractional ideals of A. For each a ∈ JK , let

a−1 := {x ∈ K× : xa ⊆ A}.

Then JK is an abelian group under multiplication, with identity element (1) = A. Let

PK := {(a) : a ∈ K×}

denote the subgroup of JK consisting of principal fractional ideals. We define the class group of
A (also referred to as the class group of K)3 as the quotient group

ClK := JK/PK .

The order of ClK is called the class number of K, and is often denoted hK .

Thus a Dedekind ring is a ufd if and only if its class group is trivial. Moreover, the class
group fits into an exact sequence

1→ A× → K×
div−−→ JK → ClK → 1, (2)

where the map div is defined by div(x) := (x) for any x ∈ K×.

Remark 1.11. If you have heard about divisors, then you can keep in mind that the group of
fractional ideals of A is nothing but the group Div(SpecA) of divisors on the curve SpecA, and
the class group of A is precisely the Picard group of SpecA. The sequence (2) is then a special
case of the defining sequence for Cartier divisors

0→ Γ(X,O×X)→ Γ(X,K ×
X )→ Γ(X,K ×

X /O×X)→ Pic(X)→ 0.

Example 1.12. The class groups of Z, Z[
√
−1], Z[

√
3] and Z[ 12 (1 +

√
5)] are trivial, while the

class group of Z[
√
−5] is cyclic of order 2. As hinted to above, the class group of Z[ζp] is trivial

for p < 23, but for p = 23 we have hQ(ζ23) = 3. As p increases, the class number of Q(ζp) tends
to ∞ [Was82, Theorem 4.20]. Thus there are only finitely many cyclotomic fields Q(ζp) such that
Z[ζp] has unique factorization.

A fundamental result in algebraic number theory states that the class group of a number field
K is finite. This result follows from the so-called Minkowski bound-theorem, which gives an upper
bound on the norm of ideals [Neu99, I §6].

2Norsk: bruddent ideal.
3Often in algebraic number theory we refer only to the algebraic number field K when we actually speak of the

ring of integers OK . Thus we may say things like “K has unique factorization”, or “the class group of K” when
we really care about OK .
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1.2 Splitting of primes

Let K be an algebraic number field. We have seen that a fundamental question is whether unique
factorization holds in OK . The introduction of the class group reduces this question to a study of
the prime ideals4 in OK , and by the “lying over-theorem” any prime ideal of OK lies over some
prime ideal of Z. So we are interested in the behavior of the primes (p) of Z when extended to
OK . In general, we distinguish between three scenarios. Indeed, by the fundamental theorem for
Dedekind rings we know that the extended ideal pOK is a product of powers of prime ideals, say

pOK = pe11 · · · perr . (3)

If any of the exponents ei are > 1, we say that p ramifies in the extension K/Q. If r > 1 and
ei = 1 for all i, then p is said to split ; if r = 1 and e1 = 1 (that is, if (p) remains a prime ideal
when extended to OK), we say that p is inert. Understanding the behavior of primes when
extended to other rings of integers lies at the heart of algebraic number theory. In fact, knowing
the set of primes that split in a Galois extension of number fields is enough to determine the
extension [Mil13, p. 2].

Let us take a look at the connection between this point of view and the problem of solving
Diophantine equations. Assume for simplicity that we are given a Diophantine problem f = 0
defined by a monic irreducible polynomial in a single variable, so f ∈ Z[X] (this case is certainly
complicated enough!). Then f defines an algebraic number field K := Q[X]/(f). Let us also
suppose that the ring of integers OK is given by OK = Z[X]/(f) (in general this is usually a little
more complicated—for example, if f = X2 − 5, then OQ(

√
5) 6= Z[

√
5]). To understand pOK , we

could start out by trying to understand the quotient OK/pOK . We compute

OK/pOK ∼= Z[X]/(p, f) ∼= Fp[X]/(f),

where f is the reduction of f modulo p. Thus, understanding the extended ideal pOK is essentially
equivalent to solving the equation f = 0 modulo p. When f is a quadratic polynomial, the
essential ingredient to this problem is the famous law of quadratic reciprocity of Gauss:

Theorem 1.13 (Quadratic reciprocity). Let p and q be distinct odd primes. Then5(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

Moreover, the following supplementary laws hold, for p an odd prime:(
−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8 .

Example 1.14. Let f be the polynomial f := X2 + 1. Thus K = Q(i), where i =
√
−1, and OK

is the ring of Gaussian integers Z[i]. Let us determine which primes that split in the extension
Q(i)/Q.

1. If p = 2, we have F2[X]/(X2 + 1) = F2[X]/(X + 1)2. Thus 2Z[i] = (1 + i)2, so the prime 2
ramifies.

4In fact, by reducing the study of Diophantine equations to a study of ideals one allows for commutative algebra
to enter the picture, and this is one of the reasons for why the word “algebraic” appears in “algebraic number
theory”.

5Recall that the Legendre symbol
(

p
q

)
is defined as 1 if p is a square modulo q, and −1 otherwise.
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2. Now suppose that p is an odd prime. Consider first the case when p ≡ 1 (mod 4). By the
first supplementary law of quadratic reciprocity we then obtain(

−1

p

)
= (−1)

p−1
2 = 1.

Hence f splits modulo p, and Fp[X]/(X2 + 1) ∼= Fp ⊕ Fp. Equivalently, the ideal pZ[i]
splits as a product of two prime ideals in Z[i].

3. If p ≡ 3 (mod 4) then
(
−1
p

)
= −1. Hence f is irreducible modulo p, and Fp[X]/(X2 + 1) is

isomorphic to the finite field Fp2 with p2 elements. Equivalently, p is inert in the extension
Q(i)/Q.

Point 2 above illustrates a classical theorem of Fermat, namely that a rational prime p is the
sum of two squares if and only if p ≡ 1 (mod 4). Indeed, let N : Z[i]→ Z denote the norm map,
defined by N(a+ ib) := a2 + b2. Then p is a sum of two squares if and only if p lies in the image
of the norm map. Now, if p ∈ imN then clearly p splits in Z[i]. On the other hand, if p splits,
i.e., p = αβ in Z[i], then N(p) = p2 = N(α)N(β) since the norm map is multiplicative. Since
we assume neither α nor β is a unit, we must have p = N(α) = N(β). Hence p is a sum of two
squares ⇐⇒ p ∈ imN ⇐⇒ p splits in the extension Q(i)/Q. But by the above discussion, p
splits if and only if p ≡ 1 (mod 4).

Remark 1.15. Using Example 1.14 we can draw a picture of (the closed points of) Spec Z[i]:

Spec Z

Spec Z[i]

(2) (3) (5) (7) (11) (13) (17)

(1 + i)

(3)

(2 + i)

(2− i)
(7) (11)

(3 + 2i)

(3− 2i)

(4 + i)

(4− i)

We can think of the morphism Spec Z[i]→ Spec Z as an analogue of a two-sheeted covering
of a Riemann surface, ramified only at the point (2). Of course, there are not always two points
in each fiber, but this is in some sense accounted for by the fact that if p is inert, then Fp[X]/(f)
is a degree 2 extension of Fp. This is in fact a general phenomenon: if we in the equation (3)
above let fi denote the degree of the extension of residue fields

fi := [k(pi) : Fp],

then we have the formula ∑
i

eifi = [K : Q]

(see [Neu99, I Proposition 8.2]). The numbers fi are usually referred to as the local degrees, while
the ei’s are known as the ramification indices. The above sum formula can be thought of as an
arithmetic version of Bézout’s theorem, where we in addition to the intersection multiplicities
also need to take into account the local degrees.
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As we have seen above, we can at least achieve a good understanding of number fields K
defined by a quadratic polynomial in a single variable. We have also hinted that key tool to
classifying such quadratic extensions of Q, along with the primes that split in the given extension,
is Gauss’ law of quadratic reciprocity. The natural follow-up question is then, what about higher
degree polynomials? A satisfying classification should involve a suitable reciprocity law—i.e.,
a way to solve higher degree polynomials modulo various primes. This question dates back to
Gauss, who gave some generalizations of his quadratic reciprocity to, e.g., cubic and quartic
reciprocity laws. It was later reannounced by Hilbert as one of his 23 problems:

Problem 1.16 (Hilbert’s Problem 9). Find the most general law of the reciprocity theorem in
any algebraic number field.

To this date, Problem 9 remains unresolved. However, in the special case that the Galois
group of the polynomial f defining the number field K is abelian, a solution is given by class
field theory and Artin’s reciprocity law. Class field theory is one of the major achievements in
mathematics in the 20th century, and successfully describes any abelian extension of a number
field K in terms of arithmetic invariants intrinsic to K.

2 Syllabus and reading material

To begin with we will cover roughly the first two chapters of:

• Jürgen Neukirch, Algebraic number theory [Neu99].

For alternative sources and additional reading material, you can also check out:

• James Milne, Algebraic number theory, [Mil17],

or

• Gerald Janusz, Algebraic number fields, [Jan96],

or

• Geir Ellingsrud’s course notes from 2013, http://www.uio.no/studier/emner/matnat/
math/MAT4250/h13/index.html.

In the second part of the course we aim to prove the arithmetic Riemann–Roch theorem. A
possible source is

• Chapter III of Jürgen Neukirch, Algebraic number theory [Neu99],

as well as notes from the lectures.
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