
MAT4250 EXERCISE SHEET 1

1. Integrality, traces and norms

Exercise 1. Is 1+
√
8

2 an algebraic integer?

Exercise 2. Is the ring

Z = {α ∈ C : α is integral over Z}
of algebraic integers noetherian?

Exercise 3. Suppose that d is a squarefree integer, and let K = Q(
√
d). Then

OK =

{
Z[
√
d], d 6≡ 1 (mod 4),

Z
[
1+
√
d

2

]
, d ≡ 1 (mod 4).

Exercise 4. Let k be a field, and let A be the ring A = k[X,Y, Z,W ]/(XY − ZW ). Let x, y, z
and w denote the cosets of X,Y, Z and W in A. Show that x, y, z and w are irreducible but not
prime elements.

Exercise 5. Let d be a squarefree integer, and let K = Q(
√
d). Compute TrK/Q(α) and NK/Q(α)

of an element α = a+ b
√
d ∈ K.

Exercise 6. In this exercise we will show that the two factorizations

2 · 3 = (1 +
√
−5)(1−

√
−5) (1)

of the element 6 ∈ Z[
√
−5] are in fact distinct in the sense that no factor is a unit multiple of

another. Thus Z[
√
−5] is not a unique factorization domain.

(a) Show that each factor in (1) is irreducible by computing their norm.
(b) Prove that no factor on one side of (1) is an associate (= unit multiple) of one from the

other side.

Exercise 7. Recall that if L/K is a separable field extension, then the form (x, y) = TrL/K(xy) is
nondegenerate. Show that this is no longer true if L/K is inseparable, for instance by considering
the fields K = Fp(X), L = Fp(X

1/p).

Exercise 8.

(a) Let L/K be a separable field extension, and let α1, . . . , αn be a basis for L over K. Show
that

d(α1, . . . , αn) = det((σiαj)i,j)
2,

where the σi’s run over all K-embeddings L→ K.
(b) Prove Stickelberger’s discriminant relation: The discriminant dK of a number field K

satisfies dK ≡ 0 or 1 (mod 4).
(Hint: Let α1, . . . , αn be an integral basis. In the expression for det(σiαj), let P denote

the sum of the terms corresponding to the even permutations, and let N be the sum of
the odd permutations. Then dK = (P −N)2 = (P +N)2 − 4PN . Show that the terms
in the latter expression are integers.)

1



MAT4250 EXERCISE SHEET 1 2

Exercise 9 (A criterion for a basis to be integral). Let K be a number field, and let n = [K : Q].
According to Proposition 2.12 in Neukirch, if a ⊆ a′ are two fractional ideals of K, then the index
(a′ : a) is finite and satisfies

d(a) = (a′ : a)2d(a′). (2)

(a) Suppose that K = Q(α) for some α ∈ OK . Use (2) to show that if d(1, α, . . . , αn−1) is
squarefree, then 1, α, . . . , αn−1 is an integral basis, and hence OK = Z[α].

(b) Let α be a root of f(X) = X3 +X + 1. Compute the ring of integers OK in K = Q(α).
(Remember that the discriminant of a polynomial of the form X3 +pX+q is −4p3−27q2.)

2. Dedekind rings

Exercise 10. Recall that any pid is also a ufd. Show that the converse holds for any Dedekind
ring.

Exercise 11. Prove that a noetherian integral domain O is a Dedekind ring if and only if Op is
a dvr for each nonzero prime ideal p of O.

(This is one of several possible definitions of a Dedekind ring. In fact, for O a noetherian
integral domain which is not a field, the following are equivalent:

(1) O is a Dedekind ring.
(2) Op is a dvr for all nonzero prime ideals of O.
(3) Each nonzero proper ideal of O admits a unique factorization into prime ideals.
(4) Every fractional ideal of O is invertible.)

Exercise 12. In this exercise we will produce infinitely many imaginary quadratic number fields
with nontrivial class group. (In fact, there are only nine imaginary quadratic number fields with
trivial class group, namely Q(

√
−d) for d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 167}.)

Let d > 1 be an odd squarefree integer such that −d 6≡ 1 (mod 4), and let K = Q(
√
−d).

Hence OK = Z[
√
−d].

(a) Show that in OK we have (2) = (2, 1 +
√
−d)2.

(b) Show that (2, 1 +
√
−d) is not a principal ideal.

Exercise 13 (Orders of ideals at primes). Let a be a fractional ideal of a Dedekind ring O, and
let p be a nonzero prime ideal of O. We define the order of a at p as

ordp(a) := νp,

where νp is the uniquely determined exponent of p occuring in the prime factorization a =
∏

q q
νq

of a. We say that a has a zero at p (written p|a) if ordp(a) > 0, or a pole at p if ordp(a) < 0.

(a) Show that ordp defines a discrete valuation K× → Z, x 7→ ordp(x) (where K is the
fraction field of O). This means that
(1) ordp(xy) = ordp(x) + ordp(y), and
(2) ordp(x+ y) ≥ min{ordp(x), ordp(y)}.

(b) Show that a = b if and only if ordp(a) = ordp(b) for all prime ideals p.

Exercise 14. In this exercise we aim to show that any ideal in a Dedekind ring O can be
generated by two elements.

(a) Let p1, . . . , pr be a sequence of prime ideals in the Dedekind ring O, and let ν1, . . . , νr
be a sequence of nonnegative integers. Show that there is an element a ∈ O such that
ordpi

(a) = νi for all i = 1, . . . , r.
(Hint: Use that, by the Chinese remainder theorem, the natural map

O →
∏
i

O/pνi+1
i
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is surjective.)
(b) Let a be a proper ideal of O. Show that a can be generated by two elements.

(Hint: By (a), there is an element a ∈ O such that ordp(a) = ordp(a) for all p|a.
However, (a) might have zeros at other primes. Find an appropriate element b ∈ O to
remedy this.)

3. Lattices

Exercise 15.

(a) Let K = Q(
√
−3). Draw a picture of the lattice Γ of integers from OK = Z[ 12 (1 +

√
−3)]

in the complex plane. Mark the fundamental mesh of Γ. What is vol(Γ)?

Now let K = Q(
√

3). We can realize OK = Z[
√

3] as a lattice in R2 via the map

Σ: K → R2

given by Σ(x+
√

3y) = (x+
√

3y, x−
√

3y). So OK is naturally a 2-dimensional object, which
suggests that we should obtain accumulation points when considering it as a subset of the
1-dimensional space R. We will show that this is indeed the case:

(b) Verify that u = 2−
√

3 is a unit in OK . Use u to define a sequence of elements from OK
converging to 0 ∈ R.

(c) Show that Z[
√

3] is dense in R.
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