MAT4250 EXERCISE SHEET 10

1. Class fields and conductors

Exercise 1. Compute $C_{\mathfrak{m}}$ when
(a) $K=\mathbb{Q}(\sqrt{-5}), \mathfrak{m}=(2,1+\sqrt{-5})$;
(b) $K=\mathbb{Q}(\sqrt{3})$ and $\mathfrak{m}=\infty_{1} \infty_{2}$ is the product of the real places of K.

Exercise 2. Exercise 3.13, p. 160 in Milne's notes.
Exercise 3. Exercise 3.15, p. 160 in Milne's notes.
2. S-INTEGERS

Exercise 4. Let K be a number field and S a finite set of finite places of K. The ring of S-integers of K is

$$
\mathcal{O}_{K}^{S}=\left\{x \in K:|x|_{v} \leq 1 \text { for all } v \notin S\right\} .
$$

Thus, for instance, if $K=\mathbb{Q}$ and $S=\{2,3\}$ then $\mathcal{O}_{K}^{S}=\mathbb{Z}\left[\frac{1}{2}, \frac{1}{3}\right]$.
Show that

$$
\left(\mathcal{O}_{K}^{S}\right)^{\times} \cong \mu(K) \oplus \mathbb{Z}^{r+s+|S|-1}
$$

