MAT4250 EXERCISE SHEET 12

1. HILBERT CLASS FIELDS, CONDUCTORS

Exercise 1. Let $K \subseteq K' \subseteq K''$ be a tower of Hilbert class fields, i.e., K' is the Hilbert class field of K, and K'' is the Hilbert class field of K'. Show that $\operatorname{Gal}(K''/K')$ is the commutator subgroup of $\operatorname{Gal}(K''/K)$.

Exercise 2.

(a) Let K/\mathbb{Q} be a finite abelian extension and let K' be the Hilbert class field of K. If K' is also abelian over \mathbb{Q} , show that we have the equality of conductors

$$\mathfrak{f}(K'/\mathbb{Q}) = \mathfrak{f}(K/\mathbb{Q}).$$

(b) Compute the conductor of $\mathbb{Q}(\sqrt{-1}, \sqrt{-5})/\mathbb{Q}$.

Exercise 3. Let p be an odd prime and let K be the Hilbert class field of $\mathbb{Q}(\zeta_p)$. If K/\mathbb{Q} is abelian, what can you say about the class group of $\mathbb{Q}(\zeta_p)$?

2. Dirichlet L-series

Exercise 4. Let χ be the unique nontrivial Dirichlet character modulo 4, i.e.,

$$\chi(n) = \begin{cases} 1, & n \equiv 1 \pmod{4} \\ -1, & n \equiv 3 \pmod{4}. \end{cases}$$

Show that $L(1,\chi) = \frac{\pi}{4}$.

3. HILBERT SYMBOLS (CONTINUED FROM SET 9)

In Set 9 we defined the second K-group $K_2(F)$ of a field F, and, for $F = \mathbb{Q}$, a map

$$\partial = \bigoplus_{v \le \infty} \partial_v \colon K_2(\mathbb{Q}) \to \mu_2 \oplus \bigoplus_{p \ge 2} \mathbb{F}_p^{\times}.$$

Here $\partial_{\infty} \colon K_2(\mathbb{Q}) \to \mu_2$ denotes the Hilbert symbol at ∞ , while $\partial_p \colon K_2(\mathbb{Q}) \to \mathbb{F}_p^{\times}$ is the tame symbol at p. We aim to show that ∂ is an isomorphism.

Exercise 5. Define the following subgroups of $K_2(\mathbb{Q})$:

$$\begin{split} \Lambda_{\infty} &= \langle \{-1, -1\} \rangle \\ \Lambda_{0} &= \langle \{a, b\} : a, b \in \mathbb{Z}_{>0} \rangle \\ \Lambda_{p} &= \langle \{a, b\} : 1 \le a, b \le p \rangle \end{split}$$

(a) Show that $K_2(\mathbb{Q}) = \Lambda_0 \oplus \Lambda_\infty$, and $\Lambda_0 = \bigcup_p \Lambda_p$.

Note that ∂_{∞} gives an isomorphism $\Lambda_{\infty} \cong \mu_2$, while $\partial_{\ell}(\Lambda_0) \subseteq \bigoplus_p \mathbb{F}_p^{\times}$ for all ℓ . We will show by induction that ∂ induces an isomorphism $\Lambda_p \cong \bigoplus_{\ell < p} \mathbb{F}_p^{\times}$.

(b) Show directly that $\Lambda_2 = \{1\}$.

For the induction step, it suffices to show that $\Lambda_p/\Lambda_q \cong \mathbb{F}_p^{\times}$, where q is the greatest prime smaller than p. For this, define maps

$$\phi \colon \Lambda_p / \Lambda_q \rightleftharpoons \mathbb{F}_p^{\times} : \psi$$

by $\phi(\{a, b\}) = \partial_p(\{a, b\})$ and $\psi([x]) = \{x, p\} \pmod{\Lambda_q}$, where x is the representative for [x] such that $1 \le x < p$.

(c) Show that ϕ and ψ are well defined inverse isomorphisms.

The above structure theorem for $K_2(\mathbb{Q})$ was first proven by Tate, and it gives in fact yet another proof of quadratic reciprocity (using no class field theory). Indeed, there is one symbol on \mathbb{Q} we have not yet made use of, namely the Hilbert symbol from \mathbb{Q}_2 . It gives a commutative diagram

i.e., $(a,b)_2 = \prod_{2 \le v \le \infty} \psi_v(a,b)$. Now there are not many homomorphisms from a finite cyclic group to μ_2 ; in fact the ψ_v 's have to be either the trivial map or the Hilbert symbols at the various places. Thus we obtain

$$(a,b)_2 = \prod_{2 < v \le \infty} (a,b)_v^{\delta_v}$$

where δ_v is 0 or 1. By plugging in various primes you can check¹ that in fact all $\delta_v = 1$, hence we obtain the product formula

$$\prod_{2 \le v \le \infty} (a, b)_v = 1$$

for Hilbert symbols on \mathbb{Q} , which is an equivalent formulation of quadratic reciprocity.

¹The cases when $p \not\equiv 1 \pmod{8}$ follow directly from properties of the formulas for the Hilbert symbols; the case $p \equiv 1 \pmod{8}$ is nontrivial since the left hand side will be 1 no matter what else you plug in. In this case one argues by contradiction using a lemma from Gauss' first proof of quadratic reciprocity, namely that there exists a prime q < p such that $\left(\frac{p}{q}\right) = -1$.