1. The class number and Dirichlet's unit theorem

Exercise 1. Compute the regulator of a real quadratic number field.
Now let K be the field $K:=\mathbf{Q}(\theta)$, where $\theta^{3}=11$. We aim to compute the class group of K. You may assume without proof that $\mathcal{O}_{K}=\mathbf{Z}[\theta]$.

If \mathfrak{b} is a fractional ideal of K, let us write $[\mathfrak{b}]$ for the class of \mathfrak{b} in Cl_{K}.

Exercise 2.

(a) Compute the discriminant d_{K}. Show that the only ramified primes in K are 3 and 11 .
(b) Show that any class $[\mathfrak{b}]$ in Cl_{K} is represented by an integral ideal \mathfrak{a} of norm $\mathcal{N}(\mathfrak{a})<17$.

Thus, in order to find generators for Cl_{K}, it suffices to check all prime ideals of \mathcal{O}_{K} of norm <17. To do this, it is enough to determine the prime ideals of \mathcal{O}_{K} that lie above a rational prime p such that $p<17$. In other words, we must compute $p \mathcal{O}_{K}$ for $p<17$. We start out by considering the unramified primes.
Exercise 3. Verify the following table:

p	$p \mathcal{O}_{K}$	Norm
2	$\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$	$\mathcal{N}\left(\mathfrak{p}_{2}\right)=2, \mathcal{N}\left(\mathfrak{p}_{2}^{\prime}\right)=4$
5	$\mathfrak{p}_{5} \mathfrak{p}_{5}^{\prime}$	$\mathcal{N}\left(\mathfrak{p}_{5}\right)=5, \mathcal{N}\left(\mathfrak{p}_{5}^{\prime}\right)=5^{2}$
7	$\mathfrak{p}_{7}=(7)$	$\mathcal{N}\left(\mathfrak{p}_{7}\right)=7^{3}$
13	$\mathfrak{p}_{13}=(13)$	$\mathcal{N}\left(\mathfrak{p}_{13}\right)=13^{3}$.

Exercise 4. We will now describe also the ramified primes, thus giving a complete list of the possible generators of Cl_{K}.
(a) Let $k \in \mathbf{Z}$ be an integer. Show that $N_{K / \mathbf{Q}}(\theta+k)=k^{3}+11$ and $N_{K / \mathbf{Q}}\left(\theta^{2}-k\right)=k^{3}+121$.
(b) Use (a) to show that $\mathfrak{p}_{11}:=(\theta)$ and $\mathfrak{p}_{3}:=(\theta-2)$ are prime ideals of norms 11 and 3 , respectively.
(c) Show that $\mathfrak{p}_{3}^{3}=(3)$. Conclude that we have found all prime ideals in \mathcal{O}_{K} of norm <17.
(d) Show that $\left[\mathfrak{p}_{5}\right]=\left[\mathfrak{p}_{2}\right]^{-1}$, and that Cl_{K} is generated by $\left[\mathfrak{p}_{2}\right]$.

Therefore, in order to determine Cl_{K} it only remains to understand \mathfrak{p}_{2}. By Exercise 4 (a), the element $\theta^{2}-5$ has norm -4 . Hence the ideal $\left(\theta^{2}-5\right)$ must be equal to either \mathfrak{p}_{2}^{2} or $\mathfrak{p}_{2}^{\prime}$, as these are the only ideals of norm 4.

Exercise 5. Prove that $\left(\theta^{2}-5\right)$ cannot be equal to $\mathfrak{p}_{2}^{\prime}$.
Hence $\mathfrak{p}_{2}^{2}=\left(\theta^{2}-2\right)$, so that the generator of Cl_{K} has order either 1 or 2 (depending on whether \mathfrak{p}_{2} is principal or not). We will show that the order is in fact 2 , which yields $\mathrm{Cl}_{K} \cong \mathbf{Z} / 2$.

Exercise 6.

(a) Show that $\mathcal{O}_{K}^{\times} \cong \mu_{2} \oplus \mathbf{Z}$. Show also that $v:=1+4 \theta-2 \theta^{2}$ is a unit. You may assume without proof that v is in fact a fundamental unit.
We will now prove that the order of $\left[\mathfrak{p}_{2}\right]$ in Cl_{K} is 2 . To do this, assume to the contrary that \mathfrak{p}_{2} is principal, say $\mathfrak{p}_{2}=(\alpha)$. As $\mathfrak{p}_{2}^{2}=\left(\theta^{2}-5\right)$, we then have

$$
\alpha^{2}=\left(\theta^{2}-5\right) w
$$

for some $w \in \mathcal{O}_{K}^{\times}$. By (a), we can write $w= \pm v^{d}$ for some integer d. Write $d=2 n+\delta$, where $\delta=0$ or 1 , and let $x:= \pm v^{\delta}\left(\theta^{2}-5\right)$. Then x is congruent to a square modulo any prime ideal \mathfrak{p} of \mathcal{O}_{K}. We will use this to obtain a contradiction.
(b) Prove that $x=-v^{\delta}\left(\theta^{2}-5\right)$, for instance by considering x modulo $\mathfrak{p}_{3}=(\theta-2)$,
(c) Show that there is a prime ideal \mathfrak{p}_{19} of norm 19 dividing $(\theta+3)$.
(d) Consider x modulo \mathfrak{p}_{19} in order to obtain a contradiction.

2. Extensions of Dedekind domains, RAMIFICATION THEORY

Exercise 7. Let p be a rational prime. Show that $p=n^{2}+3 m^{2}(n, m \in \mathbf{Z})$ if and only if $p=3$ or $p \equiv 1(\bmod 3)$.
Exercise 8. Let K be a number field. Show that $\left|d_{K}\right| \neq 1$. Conclude that there are no unramified extensions of \mathbf{Q}.
Exercise 9. Suppose that L / K is a Galois extension of number fields such that $G=\operatorname{Gal}(L / K)$ is not cyclic. Can a prime in K be inert (i.e., remains a prime ideal in \mathcal{O}_{L}) in this extension?

