MAT4250 EXERCISE SHEET 3

1. Absolute values

Exercise 1. Show that an absolute value on K is nonarchimedean (i.e., satisfies the strong triangle inequality) if and only if (the image of) \mathbb{Z} is bounded in K.

Thus, in particular, a field of characteristic p can only have nonarchimedean absolute values.

Exercise 2. If $(K, |\cdot|)$ is a field equipped with an absolute value, then K becomes a metric space by setting d(x,y) = |x-y|. If $|\cdot|$ satisfies the strong triangle inequality, then we call the resulting metric space an ultrametric space. We study some of the properties of ultrametric spaces. Thus, suppose that $|\cdot|$ satisfies the strong triangle inequality.

- (a) If $|x| \neq |y|$, show that $|x + y| = \max\{|x|, |y|\}$.
- (b) Show that every triangle in K is isosceles.
- (c) Show that every point in a ball $B(x, \epsilon)$ in K is a center of the same ball.
- (d) Prove the nonarchimedean convergence criterion: a series $\sum_{n=1}^{\infty} a_n$ from K converges if and only if $\lim_{n\to\infty} |a_n| = 0$.

Exercise 3.

- (a) Show that any nonarchimedean valuation $v \colon K^{\times} \to G$ on a number field K is discrete.
- (b) Give an example of a field K possessing a nondiscrete valuation.

2. Local fields

Exercise 4.

- (a) Show that \mathbb{Q} is dense in \mathbb{Q}_p , and that \mathbb{Z} is dense in \mathbb{Z}_p .
- (b) Show that \mathbb{Z}_p is totally disconnected.

Exercise 5. Show that the polynomial $(X^2 - 2)(X^2 - 17)(X^2 - 34)$ has a root in all completions of \mathbb{Q} , but not in \mathbb{Q} .

Exercise 6 (Structure of \mathbb{Q}_p^{\times}). Let $\mu(\mathbb{Q}_p)$ denote the roots of unity in \mathbb{Q}_p , and, for $n \geq 1$, let U_p^n denote the multiplicative group $U_p^n = 1 + p^n \mathbb{Z}_p$.

(a) Define homomorphisms

$$\log: (U_p^1, \cdot) \rightleftharpoons (\mathbb{Z}_p, +) : \exp$$

and show that these are inverse isomorphisms for $p \neq 2$. For p = 2, show that $U_2^1 \cong \mu_2 \times U_2^2$.

- (b) Show that μ(Q_p) = μ_{p-1} for p odd, while μ(Q₂) = μ₂.
 (c) Let p be any prime. Prove that Z[×]_p ≅ μ_{p-1} × U¹_p, and that Q[×]_p ≅ p^Z × μ_{p-1} × U¹_p.
 (d) Let p ≠ 2. Show that Q[×]_p/Q^{×2}_p ≅ Z/2 × Z/2, with a system of representatives given by {1, u, p, up}, where u ∈ Z[×]_p is a nonsquare modulo p.
 (e) Show that Q[×]₂/Q^{×2}₂ ≅ (Z/2)³, with a system of representatives given by {±1, ±2, ±5, ±10}.