MAT4250 EXERCISE SHEET 3

1. Absolute values

Exercise 1. Show that an absolute value on K is nonarchimedean (i.e., satisfies the strong triangle inequality) if and only if (the image of) \mathbb{Z} is bounded in K.

Thus, in particular, a field of characteristic p can only have nonarchimedean absolute values.
Exercise 2. If $(K,|\cdot|)$ is a field equipped with an absolute value, then K becomes a metric space by setting $d(x, y)=|x-y|$. If $|\cdot|$ satisfies the strong triangle inequality, then we call the resulting metric space an ultrametric space. We study some of the properties of ultrametric spaces. Thus, suppose that $|\cdot|$ satisfies the strong triangle inequality.
(a) If $|x| \neq|y|$, show that $|x+y|=\max \{|x|,|y|\}$.
(b) Show that every triangle in K is isosceles.
(c) Show that every point in a ball $B(x, \epsilon)$ in K is a center of the same ball.
(d) Prove the nonarchimedean convergence criterion: a series $\sum_{n=1}^{\infty} a_{n}$ from K converges if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$.

Exercise 3.

(a) Show that any nonarchimedean valuation $v: K^{\times} \rightarrow G$ on a number field K is discrete.
(b) Give an example of a field K possessing a nondiscrete valuation.

2. Local fields

Exercise 4.

(a) Show that \mathbb{Q} is dense in \mathbb{Q}_{p}, and that \mathbb{Z} is dense in \mathbb{Z}_{p}.
(b) Show that \mathbb{Z}_{p} is totally disconnected.

Exercise 5. Show that the polynomial $\left(X^{2}-2\right)\left(X^{2}-17\right)\left(X^{2}-34\right)$ has a root in all completions of \mathbb{Q}, but not in \mathbb{Q}.

Exercise 6 (Structure of $\left.\mathbb{Q}_{p}^{\times}\right)$. Let $\mu\left(\mathbb{Q}_{p}\right)$ denote the roots of unity in \mathbb{Q}_{p}, and, for $n \geq 1$, let U_{p}^{n} denote the multiplicative group $U_{p}^{n}=1+p^{n} \mathbb{Z}_{p}$.
(a) Define homomorphisms

$$
\log :\left(U_{p}^{1}, \cdot\right) \rightleftarrows\left(\mathbb{Z}_{p},+\right): \exp
$$

and show that these are inverse isomorphisms for $p \neq 2$.
For $p=2$, show that $U_{2}^{1} \cong \mu_{2} \times U_{2}^{2}$.
(b) Show that $\mu\left(\mathbb{Q}_{p}\right)=\mu_{p-1}$ for p odd, while $\mu\left(\mathbb{Q}_{2}\right)=\mu_{2}$.
(c) Let p be any prime. Prove that $\mathbb{Z}_{p}^{\times} \cong \mu_{p-1} \times U_{p}^{1}$, and that $\mathbb{Q}_{p}^{\times} \cong p^{\mathbb{Z}} \times \mu_{p-1} \times U_{p}^{1}$.
(d) Let $p \neq 2$. Show that $\mathbb{Q}_{p}^{\times} / \mathbb{Q}_{p}^{\times 2} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2$, with a system of representatives given by $\{1, u, p, u p\}$, where $u \in \mathbb{Z}_{p}^{\times}$is a nonsquare modulo p.
(e) Show that $\mathbb{Q}_{2}^{\times} / \mathbb{Q}_{2}^{\times 2} \cong(\mathbb{Z} / 2)^{3}$, with a system of representatives given by $\{ \pm 1, \pm 2, \pm 5, \pm 10\}$.

