MAT4250 EXERCISE SHEET 4

1. Norms of ideals

Exercise 1. Let $A \subseteq B$ be an extension of Dedekind rings, with fraction fields $K \subseteq L$. For \mathfrak{a} a fractional ideal of B, let $Nm(\mathfrak{a})$ be the fractional ideal of A generated by $N_{L/K}(x)$ for $x \in B$.

- (a) Show that Nm commutes with localization, i.e., $Nm(S^{-1}\mathfrak{a}) = S^{-1}Nm(\mathfrak{a})$.
- (b) Show that $Nm(\mathfrak{ab}) = Nm(\mathfrak{a}) Nm(\mathfrak{b})$.
- (c) $\operatorname{Nm}(\mathfrak{q}) = \mathfrak{p}^f$, where \mathfrak{q} is a prime of B, $\mathfrak{p} = \mathfrak{q} \cap A$ and $f = f(\mathfrak{q}/\mathfrak{p}) = [k(\mathfrak{q}) : k(\mathfrak{p})]$.

Exercise 2. Let $K = \mathbb{Q}(\sqrt{-5})$. Compute Nm(\mathfrak{p}) for $\mathfrak{p} = (2, 1 + \sqrt{-5})$ and $(3, 1 + \sqrt{-5})$.

2. Class fields

Exercise 3. Show using Furtwängler's theorem that there are no finite unramified abelian extensions of $\mathbb{Q}(\sqrt{-1})$.

Exercise 4. Show that the Hilbert class field of $\mathbb{Q}(\sqrt{-5})$ is $\mathbb{Q}(\sqrt{-5}, \sqrt{-1})$.

Exercise 5. Let $K = \mathbb{Q}$. Compute the ray class group $C_{\mathfrak{m}}$ when \mathfrak{m} is (5) and (5) ∞ .

Exercise 6. Let K be an imaginary quadratic number field ramified at t finite primes. Show that $|\operatorname{Cl}(K)/2\operatorname{Cl}(K)| = 2^{t-1}$.