MAT4250 EXERCISE SHEET 6

1. Local class field theory

Exercise 1. Find all subgroups of \mathbb{Q}_2^{\times} that are norm groups from a quadratic extension of \mathbb{Q}_2 . To which extension does each subgroup correspond? Compute the conductor of each extension.

Exercise 2. Show that $\mathbb{Q}_2(\zeta_7)$ is the unique cubic extension of \mathbb{Q}_2 .

Exercise 3. Construct explicitly the local Artin map in the case $K = \mathbb{Q}_p$. *Hint*: The decomposition $K^{ab} = K_{\pi} \cdot K^{un}$ becomes in this case

$$\mathbb{Q}_p^{\mathrm{ab}} = \mathbb{Q}_p(\zeta_{p^{\infty}}) \cdot \left(\bigcup_n \mathbb{Q}_p(\zeta_{p^n-1})\right).$$

Hence $\operatorname{Gal}(\mathbb{Q}_p^{\operatorname{ab}}/\mathbb{Q}_p) \cong \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^{\infty}})/\mathbb{Q}_p) \times \operatorname{Gal}(\mathbb{Q}_p^{\operatorname{un}}/\mathbb{Q}_p) \cong \mathbb{Z}_p^{\times} \times \widehat{\mathbb{Z}}$. So we need a suitable map $\mathbb{Q}_p^{\times} \to \mathbb{Z}_p^{\times} \times \widehat{\mathbb{Z}}.$

Exercise 4. Let p be an odd prime.

- (a) Compute the norm group of $\mathbb{Q}_p(\zeta_{p^{\infty}})^{\times}$ in $\widehat{\mathbb{Q}_p^{\times}} = \varprojlim_L \mathbb{Q}_p^{\times} / \operatorname{Nm}(L^{\times})$. (b) Show that $\mathbb{Q}_p(\sqrt[p-1]{-p}) = \mathbb{Q}_p(\zeta_p)$.

2. QUADRATIC RECIPROCITY AND ARTIN RECIPROCITY

For p an odd prime, let $p^* = (-1)^{\frac{p-1}{2}} p$. Recall that $\mathbb{Q}(\sqrt{p^*})/\mathbb{Q}$ is the unique quadratic subextension of $\mathbb{Q}(\zeta_p)/\mathbb{Q}$, and that the image of $\operatorname{Frob}_q \in \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ (for $q \neq p$ an odd prime) in Gal($\mathbb{Q}(\sqrt{p^*})/\mathbb{Q}$) acts as $\left(\frac{p^*}{q}\right)$.

Exercise 5.

- (a) Prove that $\mathbb{Q}(\sqrt{p^*})/\mathbb{Q}$ is ramified only at p if $p \equiv 1 \pmod{4}$, and at p and ∞ if $p \equiv 3 \pmod{4}$.
- (b) Show that Artin reciprocity implies the quadratic reciprocity law

$$\left(\frac{p^*}{q}\right) = \left(\frac{q}{p}\right).$$