Ark5: Exercises for MAT4270 - Lie algebras, exponential map and invariant integrals.

This sheet concerns the week September 24 to September 28

Plans are approximatly the following:
On Tuesday Sep 25 I did: Characters and trace, basic formulas for characters, orthogonal relations, started with finite groups

On Friday Sep 28 I plan to do: More on finite groups. Examples, i.e., symmetric groups.

Exercises

Problem 1. Show the product rule:

$$
d_{a(t) b(t)} d_{t} a b=d_{b(t)} \lambda_{a(t)} d_{t} b+d_{a(t)} \rho_{b(t)} d_{t} a
$$

where $a: \mathbb{R} \rightarrow G$ and $b: \mathbb{R} \rightarrow G$ are two maps from \mathbb{R} into the Lie group G and $a b: \mathbb{R} \rightarrow G$ is the map $t \mapsto a(t) \cdot b(t)$.

Problem 2.

a) Assume G to be connected. Show that the image \exp Lie G is not a subgroup unless exp is surjective.
b) Show that the product of two 2×2 matrices in $\mathrm{Sl}(2, \mathbb{R})$ with positive eigenvalues has positive eigenvalues.
c) Give an example of matrices a and b with purely imaginary eigenvalues such that the product has negative real eigenvalues.
d) Recall the elements a and b from $\mathrm{Sl}(2, \mathbb{R})$ as in the example in Notes5:

$$
a=\left(\begin{array}{cc}
-x & y \\
-y^{-1} & 0
\end{array}\right) \text { and } b=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1} .
\end{array}\right)
$$

Convince yourself that $b a$ is not in the image of the exponetial.
e) Very open question: Find v and w in $\operatorname{sl}(2, \mathbb{R})$ such that $\exp v=a$ and $\exp w=b$. What can you say about the right side in the BCH-formula evaluated at that v and w ?

Problem 3. (The centraliser).Let G be a Lie group and let $g \in G$ be an element. Recall the conjugation map $c_{g}: G \rightarrow G$ with $c_{g}(x)=g x g^{-1}$. Let $\chi_{g}(x)=c_{g}(x) x^{-1}=$ $g x g^{-1} x^{-1}$.
a) Show that for any $h \in G$ there is a commutative diagram

and use this to show that the rank of χ_{g} is the same everywhere in G.
b) Show that $\chi_{g}^{-1}(e)$ is equal to the centraliser $C_{G}(g)$ and that the centraliser is a closed subgroup. Show that $\operatorname{Lie}_{e} C_{G}(g)=\left\{v \in \operatorname{Lie} G \mid \operatorname{Ad}_{g} v=v\right\}$.

Problem 4. (Fixed points).Let $\phi: G \rightarrow G$ be an automorphism of the Lie group G. Show that the set of fixed points $F(\phi)$ of ϕ, that is the points for which $\phi(x)=x$, is a closed subgroup of G, and that its Lie algebra is given as Lie $F(\phi)=\{v \in \operatorname{Lie} G \mid$ $\left.d_{e} \phi(v)=v\right\}$.

Problem 5. (Conjugacy classes of $\operatorname{Sl}(2, \mathbb{K})$).Assume that the two elements a and b of $\mathrm{Sl}(2, \mathbb{K})$ have the same trace τ; where as usual \mathbb{K} is one of the fields \mathbb{C} or \mathbb{R}.
a) Show that if $\tau \neq \pm 2$, then a and b are conjugate. Find representatives in each class.
b) Show that if $\tau=2$ or $\tau=-2$ there are exactly two conjugacy classes having trace τ in each case. Find representives on each class.

Problem 6.

a) Show that any element in $\mathrm{SO}(3)$ is conjugate to one of the form

$$
R_{\theta}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) .
$$

b) What are the conjugacy classes of $\mathrm{SO}(3)$? And what are the conjugacy classes of $\mathrm{O}(3)$?

Problem 7. Let H_{3} be the Heisenberg group, i.e., the subgroup of upper triangular 3×3-matrices with ones along the diagonal. Show that exp: Lie $H_{3} \rightarrow H_{3}$ is a diffeomorphism.

Problem 8. Let h, x_{+}, x_{-}be the usual basis for $\mathrm{Sl}(2, \mathbb{R})$; that is

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad x_{x}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad x_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

a) Compute the matrices of $\operatorname{ad}_{h}, \operatorname{ad}_{x_{0}}$ and $\operatorname{ad}_{x_{1}}$ in that basis.

Let a_{t} be the element in $\operatorname{Sl}(2, \mathbb{R})$ given by

$$
a_{t}=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) .
$$

b) Show that $N=\left\{a_{t} \mid t \in \mathbb{R}\right\}$ is a Lie subgroup in the strong sense of $\operatorname{Sl}(2, \mathbb{R})$.
c) Determine the Lie subalgebra Lie N of $\operatorname{sl}(2, \mathbb{R})$.
d) Show that the matrix of $\operatorname{Ad} a_{t}$ in the usual basis h, x_{+}, x_{-}for $\operatorname{sl}(2, \mathbb{R})$ is

$$
\left(\begin{array}{ccc}
1 & o & t \\
-2 t & 1 & -t^{2} \\
0 & 0 & 1
\end{array}\right)
$$

Problem 9. let $d X$ be the usual Lebesque-measure on the space of $n \times n$-matrices $\mathrm{M}_{\mathrm{n}}(\mathbb{R})$ (which is equal to $\mathbb{R}^{n^{2}}$). Show that $|\operatorname{det} X|^{-n} d X$ is both left and right invariant measur on $\operatorname{Gl}(n, \mathbb{R})$.

Problem 10. Let G be the Lie subgroup of $\mathrm{Gl}(2, \mathbb{R})$ whose elements are the matrices of the form

$$
\left(\begin{array}{ll}
s & u \\
0 & 1
\end{array}\right)
$$

where $s \in \mathbb{R}^{*}$ and $u \in \mathbb{R}$. Determine both a left and a right invariant integral, and verify that they are different.

Problem 11. (Euler angles).Let α and β be the two one-parameter groups of $\mathrm{SO}(3)$ given by

$$
\alpha(t)=\left(\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right) \quad \beta(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos t & -\sin t \\
0 & \sin t & \cos t
\end{array}\right) .
$$

Let $\gamma: \mathbb{T}^{3} \rightarrow \mathrm{SO}(3)$ be the map $(s, t, u) \mapsto \alpha(s) \cdot \beta(t) \cdot \alpha(u)$ - where $0 \leq s, t, u \leq 2 \pi$. Show that γ is surjective and describe the fibres of γ. The angles s, t, u are called Euler angles.

Show that the normalised, invariant integral on $\mathrm{SO}(3)$ can be expressed as

$$
\frac{1}{8 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \sin t \cdot f(\gamma(s, t, u)) d s d t d u
$$

Problem 12. Show that

$$
\exp (v+w)=\lim _{n \rightarrow \infty}(\exp (v / n) \exp (w / n))^{n}
$$

for any vectors v, w in the Lie algebra Lie G of a Lie group G.
Problem 13. Show that the image of the exponential map is a union of conjugacy classes.Hint: Use that $\exp \operatorname{Ad}_{g} v=c_{g}(\exp v)$ where $c_{g}(x)=g x g^{-1}$.

