Ark5: Exercises for MAT4270 — Lie algebras, exponential map and invariant integrals.

This sheet concerns the week September 24 to September 28

Plans are approximatly the following:

On Tuesday Sep 25 I did: Characters and trace, basic formulas for characters, orthogonal relations, started with finite groups

On Friday Sep 28 I plan to do: More on finite groups. Examples, *i.e.*, symmetric groups.

Exercises

PROBLEM 1. Show the product rule:

$$d_{a(t)b(t)}d_tab = d_{b(t)}\lambda_{a(t)}d_tb + d_{a(t)}\rho_{b(t)}d_ta$$

where $a: \mathbb{R} \to G$ and $b: \mathbb{R} \to G$ are two maps from \mathbb{R} into the Lie group G and $ab: \mathbb{R} \to G$ is the map $t \mapsto a(t) \cdot b(t)$.

Problem 2.

- a) Assume G to be connected. Show that the image $\exp \operatorname{Lie} G$ is not a subgroup unless \exp is surjective.
- b) Show that the product of two 2×2 matrices in Sl(2, \mathbb{R}) with positive eigenvalues has positive eigenvalues.
- c) Give an example of matrices a and b with purely imaginary eigenvalues such that the product has negative real eigenvalues.
- d) Recall the elements a and b from $Sl(2, \mathbb{R})$ as in the example in Notes5:

$$a = \begin{pmatrix} -x & y \\ -y^{-1} & 0 \end{pmatrix}$$
 and $b = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$

Convince yourself that ba is not in the image of the exponetial.

e) Very open question: Find v and w in $sl(2, \mathbb{R})$ such that $\exp v = a$ and $\exp w = b$. What can you say about the *right side* in the BCH-formula evaluated at that v and w?

PROBLEM 3. (The centraliser).Let G be a Lie group and let $g \in G$ be an element. Recall the conjugation map $c_g : G \to G$ with $c_g(x) = gxg^{-1}$. Let $\chi_g(x) = c_g(x)x^{-1} = gxg^{-1}x^{-1}$.

a) Show that for any $h \in G$ there is a commutative diagram

$$G \xrightarrow{\chi_g} G$$
 $\lambda_h \downarrow \qquad \qquad \downarrow \lambda_{ghg-1} \circ \rho_{h-1}$
 $G \xrightarrow{\chi_g} G$

and use this to show that the rank of χ_g is the same everywhere in G.

b) Show that $\chi_g^{-1}(e)$ is equal to the centraliser $C_G(g)$ and that the centraliser is a closed subgroup. Show that $\operatorname{Lie}_e C_G(g) = \{ v \in \operatorname{Lie} G \mid \operatorname{Ad}_g v = v \}.$

PROBLEM 4. (Fixed points).Let $\phi \colon G \to G$ be an automorphism of the Lie group G. Show that the set of fixed points $F(\phi)$ of ϕ , that is the points for which $\phi(x) = x$, is a closed subgroup of G, and that its Lie algebra is given as $\text{Lie } F(\phi) = \{ v \in \text{Lie } G \mid d_e \phi(v) = v \}$.

PROBLEM 5. (Conjugacy classes of $Sl(2, \mathbb{K})$). Assume that the two elements a and b of $Sl(2, \mathbb{K})$ have the same trace τ ; where as usual \mathbb{K} is one of the fields \mathbb{C} or \mathbb{R} .

- a) Show that if $\tau \neq \pm 2$, then a and b are conjugate. Find representatives in each class.
- b) Show that if $\tau = 2$ or $\tau = -2$ there are exactly two conjugacy classes having trace τ in each case. Find representives on each class.

Problem 6.

a) Show that any element in SO(3) is conjugate to one of the form

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}.$$

b) What are the conjugacy classes of SO(3)? And what are the conjugacy classes of O(3)?

PROBLEM 7. Let H_3 be the Heisenberg group, *i.e.*, the subgroup of upper triangular 3×3 -matrices with ones along the diagonal. Show that exp: Lie $H_3 \to H_3$ is a diffeomorphism.

PROBLEM 8. Let h, x_+, x_- be the usual basis for $Sl(2, \mathbb{R})$; that is

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad x_x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad x_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

a) Compute the matrices of ad_h , ad_{x_0} and ad_{x_1} in that basis. Let a_t be the element in $\mathrm{Sl}(2,\,\mathbb{R})$ given by

$$a_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

- b) Show that $N = \{ a_t \mid t \in \mathbb{R} \}$ is a Lie subgroup in the strong sense of $Sl(2, \mathbb{R})$.
- c) Determine the Lie subalgebra Lie N of $sl(2, \mathbb{R})$.
- d) Show that the matrix of Ad a_t in the usual basis h, x_+, x_- for sl(2, \mathbb{R}) is

$$\begin{pmatrix} 1 & o & t \\ -2t & 1 & -t^2 \\ 0 & 0 & 1 \end{pmatrix}$$

PROBLEM 9. let dX be the usual Lebesque-measure on the space of $n \times n$ -matrices $M_n(\mathbb{R})$ (which is equal to \mathbb{R}^{n^2}). Show that $|\det X|^{-n} dX$ is both left and right invariant measur on $Gl(n, \mathbb{R})$.

PROBLEM 10. Let G be the Lie subgroup of $Gl(2, \mathbb{R})$ whose elements are the matrices of the form

$$\begin{pmatrix} s & u \\ 0 & 1 \end{pmatrix}$$

where $s \in \mathbb{R}^*$ and $u \in \mathbb{R}$. Determine both a left and a right invariant integral, and verify that they are different.

PROBLEM 11. (Euler angles).Let α and β be the two one-parameter groups of SO(3) given by

$$\alpha(t) = \begin{pmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \beta(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{pmatrix}.$$

Let $\gamma \colon \mathbb{T}^3 \to \mathrm{SO}(3)$ be the map $(s,t,u) \mapsto \alpha(s) \cdot \beta(t) \cdot \alpha(u)$ — where $0 \le s,t,u \le 2\pi$. Show that γ is surjective and describe the fibres of γ . The angles s,t,u are called Euler angles.

Show that the normalised, invariant integral on SO(3) can be expressed as

$$\frac{1}{8\pi^2} \int_0^{2\pi} \int_0^{2\pi} \int_0^{2\pi} \sin t \cdot f(\gamma(s,t,u)) \, ds \, dt \, du$$

PROBLEM 12. Show that

$$\exp(v+w) = \lim_{n \to \infty} (\exp(v/n) \exp(w/n))^n$$

for any vectors v, w in the Lie algebra Lie G of a Lie group G.

PROBLEM 13. Show that the image of the exponential map is a union of conjugacy classes. Hint: Use that $\exp \operatorname{Ad}_q v = c_q(\exp v)$ where $c_q(x) = gxg^{-1}$.