Ark2: Exercises for MAT4270 — Basics, Specific groups, π_0 and π_1 .

This sheet concerns the week August 27 to August 31

Plans are approximatly the following:

On Tuesady I did: Specific groups.

On Friday I plan to do: Finish specific groups for this time, that is do the symplectic case. Start on coverings and connected components.

Next week: Finish con-comps and coverings. Start on Lie algebras, invariant vector fields, exponential maps.

Exercises

QUATERNIONS

Problem 1.

- a) Show that the centre of the quaternions \mathbb{H} is the set \mathbb{R} of real quaternions.
- b) Show that if $e \in \text{Im } \mathbb{H}$, then the centraliser of e, that is the set of elements commuting with e, equals $\{x + ye \mid x, y \in \mathbb{R}\}$.
- c) Let $e \in \mathbb{H}$ be a pure imaginary norm one quaternion, and let q = x + ye be of norm one. Show that $q^{-1} = x ye$.
- d) Show that there are univeral polynomials $P_n(X,Y)$ and $Q_n(X,Y)$, homogenous of degree n and whith integral coefficients, such that for any integer $n \in \mathbb{Z}$

$$q^{n} = P_{|n|}(x, y) + Q_{|n|}(x, y)e$$

where q = x + ye is a quaternion of norm one.

PROBLEM 2. Show that $\mathbb{H}^* \simeq \mathbb{R}^+ \times SU(2)$ as Lie groups.

PROBLEM 3. Let i, j and k be the standard basis for the quaternion algebra. One may identify \mathbb{C} with the subspace $\mathbb{R} + i\mathbb{R}$.

- a) Show that then $\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$, and that one has the rule $jz = \bar{z}j$ for all $z \in \mathbb{C}$ which defines the multiplicative structure.
- b) Let V be a complex vector space and assume given an additive map $J: V \to V$ satisfying $J(zv) = \bar{z}J(v)$. Show that this gives rise to a structure as a quaternionic vectorspace on V.

SEMIDIRECT PRODUCT

PROBLEM 4. (Semidirect product I).Let H and A be two Lie groups. Assume that A acts on H in a smooth way meaning that there is a smooth map $\gamma \colon A \times H \to H$ fullfilling the requirements of an action. We denote the value of γ at (a,h) by $\gamma_a(h)$. Define a product on $H \times A$ by the formula

$$(h,a)(h',a') = (h\gamma_a(h'),aa').$$

a) Show that this defines a Lie group structure on $H \times A$.

The Lie group is called the *semi-direct product* of H and A, and we often denoted it by $H \times_{\gamma} A$ to remember that the action γ is an essential ingredient.

- b) Show that $H \simeq H \times \{e\}$ and $A \simeq \{e\} \times A$ are a strong subgroups of $H \times_{\gamma} A$.
- c) Show that H is a normal subgroup of $H \times_{\gamma} A$ and that the action of A on H by conjugation is the action γ .

PROBLEM 5. (The semidirect product II).Let G be a Lie group. Assume that there are two strong subgroups, $H \subseteq G$ and $A \subseteq G$ and that H is normal.

- a) Show that action γ of A on H by conjugation is smooth.
- b) Show that if the induced homomorphism of (ordinary) groups $A \to G/H$ is an isomorphism, then G is isomorphic (as a Lie group) to the semi-direct product $H \times_{\gamma} A$.

SPRCIFIC GROUPS

PROBLEM 6. Let Q is the $2n \times 2n$ -matrix

$$Q = \begin{pmatrix} 0 & I_n \\ -I_n & = \end{pmatrix}$$

where I_n denotes the $n \times n$ -identity matrix.

- a) Show that $Q^2 = -1$ and $Q^{-1} = -Q$.
- b) Show that if a is a symplectic matrix, *i.e.*, $a^t t Q a = Q$, then the eigenvalues of a come in quadruples: λ , $\bar{\lambda}, \lambda^{-1}, \bar{\lambda}^{-1}$. HINT: If $P(\lambda)$ is the characteristic polynomial to a, then $P(\lambda) = \lambda^{2n} P(\lambda^{-1})$.
- c) Show that the determinant of a is one.

PROBLEM 7. Let G be a Lie group and let $J: G \to G$ be a homomorphism of Lie groups. Let H be the set of fixed points of J, that is $H = \{g \in G \mid Jg = g\}$.

- a) Show that H is a subgroup.
- b) Show that H is the fibre over e of the map $\Psi(g) = J(g)g^{-1}$. Show that Ψ is smooth, being the composition

$$G \xrightarrow{\mathrm{id}_G, J} G \times G \xrightarrow{\nu} G$$

where as usual $\nu(x,y) = xy^{-1}$.

- c) Show that the rank of Ψ is the same everywhere, and that H is a strong Lie subgroup of G.
- d) Compute the derivative of Ψ at the unit element, and show that the derivative $j = d_e J$ of J at e is an endomorphism of the tangent space $T_e G$ (i.e., it maps $T_e G$ into it self), and show that

$$T_e H = \{ v \in T_e G \mid j(v) = v \}.$$

PROBLEM 8. Let $G = \mathrm{Sl}(n,\mathbb{C})$. We have two maps $c(a) = \bar{a}$ (conjugate all the entries in a) and $d(a) = ((\bar{a})^{-1})^t$ (conjugate all the entries, invert and transpose a) from G to G.

- a) Show that they both are involutive (meaning the square is the identity) homomorphims, and that the groups of fixed points are SU(n) and $SI(n, \mathbb{R})$ respectively.
- b) Compute the derivatives of c and d at a fixed point $a \in H$, and show that $d_a d$ and $d_a c$ are antilinear involutions $T_a H \to T_a H$ (where $H = \mathrm{SU}(n)$ respectively $H = \mathrm{Sl}(n, \mathbb{R})$), a map j of complex vectorspaces being antilinear if $j(zv) = \bar{z}j(v)$.

PROBLEM 9. Show that $SO(n, \mathbb{R}) = SU(n) \cap Sl(n, \mathbb{R})$ as subgroups of $Sl(n, \mathbb{C})$.

PROBLEM 10. Show that $U(n) = Gl(n, \mathbb{C}) \cap SO(2n)$ as subgroups of $Gl(2n, \mathbb{R})$.

Connected components and universal covers.

PROBLEM 11. Assume that G is a Lie group with $G_0 \simeq \mathbb{S}^1$ and G/G_0 cyclic of odd ordre. Show that G is abelian and $G \simeq \mathbb{S}^1 \times G/G_0$.

PROBLEM 12. Show that $O(3) \simeq SO(3) \times \mu_2$.

PROBLEM 13. Let G and H be a Lie groups of the same dimension, and assume that H is connected. Assume further that there is an injective homomorphism $\phi \colon H \to G$. Show that ϕ is an isomorphism between H and the connected component G_0 of the unit $e \in G$.

PROBLEM 14. Let $V = M_2(\mathbb{C})$ be the space of complex 2×2 -matrices. Let

$$q(a,b) = \frac{1}{2}\operatorname{tr}(ab^{\flat})$$

where b^{\flat} is the *cofactor* matrix of b — obtained by swapping the diagonal elements and swapping the sign of the two other entries.

- a) Show that q(a,b) is a symmetric bilinear form on V with $q(a,a) = \det a$. If $g,h \in \mathrm{Sl}(2,\mathbb{C})$, then the map $a \mapsto gah^{-1}$ preserves the form q, and hence we obtain a map $\Lambda \colon \mathrm{Sl}(2,\mathbb{C}) \times \mathrm{Sl}(2,\mathbb{C}) \to \mathrm{SO}(4,\mathbb{C})$.
- b) Show that Λ is a Lie group homorphism whose kernel is isomorphic with $\mathbb{Z}/2\mathbb{Z}$.
- c) Show that Λ is the universal cover of SO(4, \mathbb{C}).

PROBLEM 15. Let $G \subseteq U(n) \times \mathbb{R}$ be the subset $\{(g,t) \mid \det g = e^{2\pi i t}\}$.

a) Show that G is a strong subgroup, and that the projection onto $\mathrm{U}(n)$ induces an exact sequence

$$1 \longrightarrow \mathbb{Z} \longrightarrow G \stackrel{p}{\longrightarrow} U(n) \longrightarrow 1$$

Conclude that p is a covering.

b) Show that there is an exact sequence

$$1 \longrightarrow SU(n) \longrightarrow G \longrightarrow \mathbb{R} \longrightarrow 0$$

induced from the second projection. Conclude that G is connected and simply connected, and hence $p: G \to U(n)$ is the universal cover of U(n).

Versjon: Thursday, August 30, 2012 3:53:26 PM