Ark3: Exercises for MAT4270 — Lie algebras, π_0 and π_1 .

This sheet concerns the week September 1 to September 5

Plans are approximatly the following:

On Tuesday I did: Finished universal cover. Started on the construction of a Lie algebra structure on T_eG .

On Friday I plan to do: Finish construction of a Lie algebra structure on T_eG , *i.e.*, prove The Jacobi identity. Talk about the adjoint representation. Next week: Lie algebra of subgroups. Invariant vector fields, exponential maps.

Exercises

Specific groups

PROBLEM 1. The aim of this exercise is to show that $Sl(2, \mathbb{R})$ maps surjectively to the identity component of O(1, 2). We let g be the norm on \mathbb{R}^3 of index (1, 3) given by

$$g(x) = x_0^2 - x_1^2 - x_2^2$$

when $x = (x_0, x_1, x_2)^t$.

a) Let $M \subseteq M_2(\mathbb{R})$ be the subspace of symmetric matrices. Any element x from M can be represented in the following way:

$$x = \begin{pmatrix} x_0 + x_2 & x_1 \\ x_1 & x_0 - x_2 \end{pmatrix}.$$

Show that $g(x) = \det x$.

b) Show that if $a \in Sl(2, \mathbb{R})$, then $axa^t \in M$ whenever $x \in M$, and that g(ax) = g(x).

c) Show that sending a to the map $x \mapsto axa^t$ defines a Lie group homorphism $\phi: \operatorname{Sl}(2, \mathbb{R}) \to \operatorname{O}((1, 2))$ whose kernel is $\mu_2 = \{\pm 1\}$.

d) Show that $\operatorname{Im} \phi$ equals the identity component O(1, 2).

CONNECTED COMPONENTS AND UNIVERSAL COVERS.

PROBLEM 2. Let G_1 and G_2 be two connected Lie groups and denote by $\pi_i \colon \widetilde{G}_i \to G_i$ their universal covers.

a) Show that any Lie group homomorphism $\phi: G_1 \to G_2$ lifts to a unique Lie group homomorphism $\tilde{\phi}: \tilde{G}_1 \to \tilde{G}_2$.

b) Give an example where ϕ is injective, but ϕ is not.

c) Show that sending G to \widetilde{G} and ϕ to $\widetilde{\phi}$ is a functor

$Lie groups \rightarrow Lie groups_0$

where $Liegroups_0$ is the category of connected and simply connected Lie groups.

PROBLEM 3. Let G and H be two Lie groups and $\phi: G \to H$ a map of Lie groups. a) Show that $\phi(G_0) \subseteq \phi(H_0)$, and that sending G to G_0 and ϕ to $\phi_0 = \phi|_{G_0}$ is a functor.

b) Show that ϕ is surjective if and only ϕ_0 is surjective, and that ϕ is injective if and only if ϕ_0 is.

PROBLEM 4. The universal cover of \mathbb{S}^1 is the exponential map $\mathbb{R} \to \mathbb{S}^1$ as usual given as $e^{2\pi i t}$. Show that there is an exact sequence of Lie groups

 $0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{R} \longrightarrow \mathbb{S}^1 \longrightarrow 0$

a) Show that any Lie group map $\phi \colon \mathbb{R} \to \mathbb{R}$ is \mathbb{R} -linear, *i.e.*, $\phi(x) = x\phi(1)$ for all x and use this to show that any Lie group map $\mathbb{S}^1 \to \mathbb{S}^1$ is of the form $x \mapsto x^n$ for some n.

PROBLEM 5. Show that the universal cover of $\mathbb{S}^1 \times \mathbb{S}^1$ is the map

$$\mathbb{R} \times \mathbb{R} \to \mathbb{S}^1 \times \mathbb{S}^1$$
 given by $(s, t) \mapsto (e^{2\pi i s}, e^{2\pi i t})$.

a) Show that group of Lie group automorphisms of $\mathbb{S}^1 \times \mathbb{S}^1$ is given as

$$\operatorname{Aut}(\mathbb{S}^1 \times \mathbb{S}^1) = \operatorname{Sl}(2, \mathbb{Z}).$$

-2 -

LIE ALGEBRAS PROBLEM 6. Recall that if A is any algebra over a ring R (not necessarily commutative nor associative) an \mathbb{R} -linear map $D: A \to A$ is called a *derivation* if for any pair of elements a, b from A it fulfills

$$D(ab) = aD(b) + D(a)b$$
(1)

Show that L is a Lie algebra, then for any $x \in L$, the map $ad_x \colon L \to L$ given by $ad_x(y) = [x, y]$ is a derivation; that is it satisfies:

$$ad_x([y, z]) = [y, ad_x(z)] + [ad_x(y), z].$$

PROBLEM 7. Verify that $M_n \mathbb{K}$ is a Lie algebra under the commutator product [x, y] = xy - yx; *i.e.*, check the Jacobi identity.

PROBLEM 8. Convince yourself that the only thing you used when you solved problem 7 was the associative law. Hence if A is any associative ring, then A is a Lie algebra with the commutator [x, y] = xy - yx as Lie product.

Versjon: Wednesday, September 5, 2012 10:17:29 AM