Ark4: Exercises for MAT4270 — Lie algebras.

This sheet concerns the week September 17 to September 21

Plans are approximatly the following:

On Tuesday Sep $11\ \mathrm{I}$ did: Left invariant vector fields, one parameter groups, exponential map.

On Friday Sep 14 I plan to do: Classify abelian Lie groups. Start on Baker-Campbell-Hausdorff formula

Exercises

Specific groups

PROBLEM 1. (The Heisenberg group).Let H_3 be the group of upper triangular matrices with all diagonal elements equal to one; that is, the matrices of the form

$$a = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$$

where the entries come from the field \mathbb{K} .

a) Show that centre $Z(H_3) \simeq \mathbb{K}$ of H_3 and that there is an extension

$$0 \longrightarrow \mathbb{K} \longrightarrow H_3 \longrightarrow \mathbb{K}^2 \longrightarrow 0$$

where \mathbb{K} and \mathbb{K}^2 are the additive groups.

b) Show that the Lie algbra Lie H_3 of H_3 is the set of strictly upper trtiangular matrices, i.e., matrices of the form:

$$v = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}.$$

c) Let p, q and r be the elements

$$p = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, r = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

Show that [p, r] = [q, r] = 0 and that r generate the *centre* of Lie H_3 . Show that [p, q] = r.

d) Show that

$$\exp v = \begin{pmatrix} 1 & x & y + \frac{1}{2}xz \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$$

PROBLEM 2. Let

$$a = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}.$$

find $\exp a$

Connected components and universal covers.

PROBLEM 3. Let G be the following Lie group. As a manifold it is isomorphic to $\mathbb{C} \times \mathbb{C}$ and the product is given as

$$(z, w) \cdot (z', w') = (z + z', w + e^z w').$$

- a) Check that G is a simply connected Lie group. Show that it is the semi direct product of $\mathbb{C} \times_{\gamma} \mathbb{C}$ where the action γ is $\gamma(z)w = e^z w$. Show that the centre of G is the subgroup $\{(2\pi ni, 0) \mid n \in \mathbb{Z}\}.$
- b) For any $n \in \mathbb{N}$ let G_n be the following Lie group. The underlying manifold is $\mathbb{C}^* \times \mathbb{C}$ and product is given as

$$(z, w) \cdot (z', w') = (zz', w + z^n w').$$

Convince yourself that this is a Lie group, and show that the unicersal cover is the group G above.

c) Show that if, $n \neq m$ then G_n and G_m are not isomorphic.

LIE ALGEBRAS.

PROBLEM 4. Let L be a Lie algebra over \mathbb{K} . Let $\mathrm{ad}_{\star} \colon L \to \mathrm{Aut}(L)$ be the adjoint representation, that is $\mathrm{ad}_v w = [v, w]$. (This is an "abstract" version of the ad_{\star} for the Lie algebra of a group.) Show that ad_{\star} is a homorphism of Lie algebras. That is

$$\mathrm{ad}_{[v,w]} = \mathrm{ad}_v \mathrm{ad}_w - \mathrm{ad}_w \mathrm{ad}_v$$

HINT: The Jacobi identity.

PROBLEM 5.

- a) Let L be a nonabelian Lie algebra over \mathbb{K} of dimension 2. Show that there is a basis x, y of L with [x, y] = x.
- b) Let M be the subset of $Gl(2, \mathbb{K})$ consisting of matrices of the form

$$\begin{pmatrix} s & t \\ 0 & 0 \end{pmatrix}$$

with s and $t \in \mathbb{K}$. Show that ad_{\star} induces an isomorphim between L and M. HINT: Compute the matrices of ad_{x} and ad_{y} in standard basis.

c) Let G be the subgroup of $Gl(2, \mathbb{K})$ whose members are the matrices

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

Show that G is diffeomorphic to $\mathbb{K}^* \times \mathbb{K}$. Is G connected? Is it simply connected? (The answers depend on \mathbb{K}). Show that Lie $G \simeq L$.

PROBLEM 6. Let e_{ij} be the $n \times n$ -matrix with zeros everywhere except at the place (i, j), i.e., $(e_{ij})_{\alpha\beta} = \delta_{i\alpha}\delta_{j\beta}$.

- a) Show that $e_{ij}e_{jk}=e_{ik}$.
- b) Show that the linear span of the three matrices e_{ij} , e_{ji} and $e_{ii} e_{jj}$ is a Lie algebra which is isomorphic to sl(2, \mathbb{K}).

Problem 7.

- a) Give an example of a subalgebra that is not an ideal.
- b) Recall that the centre of a Lie algebra L is the set $Z(L) = \{v \in L \mid [v, w] = 0 \text{ for all } w \in L\}$. Show that Z(L) is an ideal.

PROBLEM 8. Let L be a Lie algebra of dimension n over \mathbb{K} .

- a) Assume that the centre of L is of dimension at least n-1. Show that L is abelian. (Recall that the centre of L is the set $Z(L) = \{ v \in L \mid [v, w] = 0 \text{ for all } w \in L \}$)
- b) Show that there are exactly two non-isomorphic Lie algebras satisfying dim L = n and dim Z(L) = n 2. Hint: If v and w are vectors linearly independent mod the centre, either [v, w] is central or not.

THE EXPONENTIAL MAP.

PROBLEM 9. Show that exp: $sl(2, \mathbb{C}) \to Sl(2, \mathbb{C})$ is surjective.

PROBLEM 10. Show that if N is nilpotent (i.e., $N^k = 0$ for som k) then $\exp N$ is unipotent (i.e., I + M for some nilpotent matrix M).

PROBLEM 11. Let v be a vector field on a Lie group G, and let D_v be the global derivation associated to it. Define an action of G on $C^{\infty}(G)$ by letting $l_g(f) = f \circ \lambda_{g^{-1}}$. Show that v is left invariant if and only if

$$D_v \circ l_g = l_g \circ D_v$$

for all $g \in G$.

PROBLEM 12. Assume that a is an $n \times n$ -matrix.

a) Assume that a satisfys $a^2 = -I_n$. Show that

$$\exp ta = \cos t \cdot I_n + \sin t \cdot a.$$

b) Assume that a satisfys $a^2 = I_n$. Show that

$$\exp ta = \cosh t \cdot I_n + \sinh t \cdot a.$$

c) Genetralise the two preciding points by finding a closed formula for $\exp ta$ whenever $a^2 = -dI_n$ for some $d \in \mathbb{K}$.

PROBLEM 13. Show that if [v, w] is central, then $\exp v \exp w = \exp(-[v, w]) \exp v \exp w$.

Versjon: Thursday, September 13, 2012 1:06:59 PM