Ark4: Exercises for MAT4270 - Lie algebras.

This sheet concerns the week September 17 to September 21

Plans are approximatly the following:
On Tuesday Sep 11 I did: Left invariant vectorfields, one parameter groups, exponential map.

On Friday Sep 14 I plan to do: Classify abelian Lie groups. Start on Baker-Campbell-Hausdorff formula

Exercises

Specific groups

Problem 1. (The Heisenberg group). Let H_{3} be the group of upper triangular matrices with all diagonal elements equal to one; that is, the matrices of the form

$$
a=\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)
$$

where the entries come from the field \mathbb{K}.
a) Show that centre $Z\left(H_{3}\right) \simeq \mathbb{K}$ of H_{3} and that there is an extension

$$
0 \longrightarrow \mathbb{K} \longrightarrow H_{3} \longrightarrow \mathbb{K}^{2} \longrightarrow 0
$$

where \mathbb{K} and \mathbb{K}^{2} are the additive groups.
b) Show that the Lie algbra Lie H_{3} of H_{3} is the set of strictly upper trtiangular matrices, i.e., matrices of the form:

$$
v=\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) .
$$

c) Let p, q and r be the elements

$$
p=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), q=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), r=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

Show that $[p, r]=[q, r]=0$ and that r generate the centre of Lie H_{3}. Show that $[p, q]=r$.
d) Show that

$$
\exp v=\left(\begin{array}{ccc}
1 & x & y+\frac{1}{2} x z \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)
$$

Problem 2. Let

$$
a=\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right) .
$$

find $\exp a$

Connected components and universal covers.

Problem 3. Let G be the following Lie group. As a manifold it is isomorphic to $\mathbb{C} \times \mathbb{C}$ and the product is given as

$$
(z, w) \cdot\left(z^{\prime}, w^{\prime}\right)=\left(z+z^{\prime}, w+e^{z} w^{\prime}\right)
$$

a) Check that G is a simply connected Lie group. Show that it is the semi direct product of $\mathbb{C} \times{ }_{\gamma} \mathbb{C}$ where the action γ is $\gamma(z) w=e^{z} w$. Show that the centre of G is the subgroup $\{(2 \pi n i, 0) \mid n \in \mathbb{Z}\}$.
b) For any $n \in \mathbb{N}$ let G_{n} be the following Lie group. The underlying manifold is $\mathbb{C}^{*} \times \mathbb{C}$ and product is given as

$$
(z, w) \cdot\left(z^{\prime}, w^{\prime}\right)=\left(z z^{\prime}, w+z^{n} w^{\prime}\right) .
$$

Convince yourself that this is a Lie group, and show that the unicersal cover is the group G above.
c) Show that if, $n \neq m$ then G_{n} and G_{m} are not isomorphic.

Lie algebras.

Problem 4. Let L be a Lie algebra over \mathbb{K}. Let ad ${ }_{\star}: L \rightarrow \operatorname{Aut}(L)$ be the adjoint representation, that is $\operatorname{ad}_{v} w=[v, w]$. (This is an "abstract" version of the ad_{\star} for the Lie algebra of a group.) Show that ad_{\star} is a homorphism of Lie algebras. That is

$$
\operatorname{ad}_{[v, w]}=\operatorname{ad}_{v} \operatorname{ad}_{w}-\operatorname{ad}_{w} \operatorname{ad}_{v}
$$

Hint: The Jacobi identity.

Problem 5.

a) Let L be a nonabelian Lie algebra over \mathbb{K} of dimension 2 . Show that there is a basis x, y of L with $[x, y]=x$.
b) Let M be the subset of $\mathrm{Gl}(2, \mathbb{K})$ consisting of matrices of the form

$$
\left(\begin{array}{ll}
s & t \\
0 & 0
\end{array}\right)
$$

with s and $t \in \mathbb{K}$. Show that $\operatorname{ad}_{\star}$ induces an isomorphim between L and M. Hint: Compute the matrices of ad_{x} and ad_{y} in standard basis.
c) Let G be the subgroup of $\mathrm{Gl}(2, \mathbb{K})$ whose members are the matrices

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

Show that G is diffeomorphic to $\mathbb{K}^{*} \times \mathbb{K}$. Is G connected? Is it simply connected? (The answers depend on \mathbb{K}). Show that $\operatorname{Lie} G \simeq L$.

Problem 6. Let $e_{i j}$ be the $n \times n$-matrix with zeros everywhere except at the place (i, j), i.e., $\left(e_{i j}\right)_{\alpha \beta}=\delta_{i \alpha} \delta_{j \beta}$.
a) Show that $e_{i j} e_{j k}=e_{i k}$.
b) Show that the linear span of the three matrices $e_{i j}, e_{j i}$ and $e_{i i}-e_{j j}$ is a Lie algebra which is isomorphic to $\operatorname{sl}(2, \mathbb{K})$.

Problem 7.

a) Give an example of a subalgebra that is not an ideal.
b) Recall that the centre of a Lie algebra L is the set $Z(L)=\{v \in L \mid[v, w]=$ 0 for all $w \in L\}$. Show that $Z(L)$ is an ideal.

Problem 8. Let L be a Lie algebra of dimension n over \mathbb{K}.
a) Assume that the centre of L is of dimension at least $n-1$. Show that L is abelian. (Recall that the centre of L is the set $Z(L)=\{v \in L \mid[v, w]=0$ for all $w \in L\}$)
b) Show that there are exactly two non-isomorphic Lie algebras satisfying $\operatorname{dim} L=n$ and $\operatorname{dim} Z(L)=n-2$. Hint: If v and w are vectors linearly independent mod the centre, either $[v, w]$ is central or not.
The exponential map.
Problem 9. Show that exp: $\operatorname{sl}(2, \mathbb{C}) \rightarrow \mathrm{Sl}(2, \mathbb{C})$ is surjective.
Problem 10. Show that if N is nilpotent (i.e., $N^{k}=0$ for som k) then $\exp N$ is unipotent (i.e., $I+M$ for some nilpotent matrix M).

Problem 11. Let v be a vector field on a Lie group G, and let D_{v} be the global derivation associated to it. Define an action of G on $C^{\infty}(G)$ by letting $l_{g}(f)=f \circ \lambda_{g^{-1}}$. Show that v is left invariant if and only if

$$
D_{v} \circ l_{g}=l_{g} \circ D_{v}
$$

for all $g \in G$.
Problem 12. Assume that a is an $n \times n$-matrix.
a) Assume that a satisfys $a^{2}=-I_{n}$. Show that

$$
\exp t a=\cos t \cdot I_{n}+\sin t \cdot a
$$

b) Assume that a satisfys $a^{2}=I_{n}$. Show that

$$
\exp t a=\cosh t \cdot I_{n}+\sinh t \cdot a
$$

c) Genetralise the two preciding points by finding a closed formula for $\exp t a$ whenever $a^{2}=-d I_{n}$ for some $d \in \mathbb{K}$.

Problem 13. Show that if $[v, w]$ is central, then $\exp v \exp w=\exp (-[v, w]) \exp v \exp w$.

