Ark6: Exercises for MAT4270 — Finite groups, Maximal tori This sheet concerns the several weeks

Finite groups

OPPGAVE 1. Assume that the finite group G acts on the finite set X. Let $Fix(g) = \{x \in X \mid gx = x\}$ be the fixed point set of the group element g, and recall that G_x denotes the isotropy group of $x, i.e., G_x = \{g \mid gx = x\}$. Let k denote the number of orbits G has in X.

a) Show that $\sum_{g \in G} \# \operatorname{Fix}(g) = \sum_{x \in X} |G_x|$ HINT: Look at the subset $\{ (g, x) | gx = x \}$ of $X \times X$ and use the two projections.

b) Let χ be the character of the permutation representation induced by the action. Show that $\langle \mathbb{1}_G, \chi \rangle_G = k$, and hence that the multiplicity of $\mathbb{1}_G$ in the permutation representation is k.

c) Assume that action of G on X is transitive. Let $x \in X$. Let r denote the number of orbits the isotropy group G_x has on X. Show that r does not depend on x and that $r = \langle \chi, \chi \rangle_G$. HINT: Count the number of orbit that G has on the product $X \times X$.

d) We say that the action of G is doubly transitive, if there for every pair of pairs (!) (x, y) and (x', y') of elements from X there is a group element with gx = x' and gy = y'. Show that G that action is doubly transitive if $\chi - \mathbb{1}_G$ is an irreducible character.

In these exercises we adopt the following terminology. A G-module V is said to be *monic* if every irreducible G-module occures in V with multiplicity at most one -i.e., if an irreducibel W is summand in V, it is unique.

OPPGAVE 2. Let G be a group and let V be a finite dimensional representation of G over \mathbb{C} . Assume that V is completely reducible (*e.g.*, G finite or compact). Show that the algebra $\operatorname{End}_G(V)$ is commutative if and only V is monic.

OPPGAVE 3. Let $H \subseteq G$ be a finite group with a subgroup and let V be a finite dimensional, complex G-module. Show that $\operatorname{End}_H(V)$ is abelian if and only if $\operatorname{res}_H^G V$ is *monic*.

OPPGAVE 4. Let G be a group. Recall that one may identify the group algebra $\mathbb{K}[G]$ with the vector space of functions $f: G \to \mathbb{K}$ with f corresponding to $\sum_{x \in G} f(x)x$. a) Show that the product in $\mathbb{K}[G]$ corresponds to the *convolusion product* of functions:

$$a \star b(g) = \sum_{y \in G} a(y^{-1}g)b(y)$$

b) Let f be a function G with values in \mathbb{K} . Let f^t be defined by $f^t(g) = f(g^{-1})$. Show that this induces an anti-involution on $\mathbb{K}[G]$ shuch that $x^t = \sum_g a_g g^{-1}$ if $x = \sum_g a_g g$.

OPPGAVE 5. Let S_n be the group of permutation of $\{1, 2, 3, \ldots, n\}$ and let $S_{n-1} \subseteq S_n$ be the subgroup fixing the the last element n. Show that any element $\sigma \in S_n$ is conjugate to its inverse by an element in S_{n-1} .

HINT: Show that it is enough to check it for cycles. The following might be usefull: If σ is a permutation with $\sigma(i) = s_i$, then $\sigma \circ (1, 2, ..., n) \circ \sigma^{-1} = (s_1, s_2, ..., s_n)$.

OPPGAVE 6. Construct the character table of the alternating group A_5 .

OPPGAVE 7. Let $H \subseteq G$ be a subgroup of the finite group G. Let W be an H-module of finite dimension.

a) Show that dim $\operatorname{ind}_{H}^{G} W = [G : H] \dim V.$

b) Let $\mathbb{K}[G/H]$ be the permutation representation induced from the left action of G on G/H. Show that $\operatorname{ind}_{H}^{G} \mathbb{1}_{K} = \mathbb{K}[G/H]$.

c) What is the character of $\mathbb{K}[G/H]$?

OPPGAVE 8. Let $H = \langle \sigma \rangle \subseteq D_{2n}$ be the subgrup generated by the involution σ in the dihedral group D_{2n} . Compute the character of the induced representation $\operatorname{ind}_{H}^{D_{2n}} L_{-1}$, where σ acts on L_{-1} by multiplication by -1.

Maximal tori

Oppgave 9.

$$-2 -$$

a) Show that the subgroup of SO(n) with elements of the form

where $\epsilon_i \in \mu_2$ is a maximal abelian subgroup.

b) Show that any maximal torus in a compact, connected group is a maximal abelian subgroup

OPPGAVE 10. Let G be a compact, connected Lie group.

- a) Assume that a maximal torus T in G is normal. Show that T = G.
- b) Show that any abelian, normal subgroup of G is central.

OPPGAVE 11. Let $g \in G$, a compact, connected Lie group. Show that the identity component of the centraliser $C_G(g)$ is equal to the union of the maximal tori containing g. Give an example that the centraliser $C_G(g)$ is not connected. HINT: Look for elements of SO(3).

OPPGAVE 12. Let $H \subseteq G$ be a closed subgroup containing the normaliser $N_G T$ of a maximal torus T. Show that $N_G H = H$.

OPPGAVE 13. Let G be a compact, connected Lie group. Show that if dim $G \leq 2$, then G is a torus.

OPPGAVE 14. Assume that G is compact and connected. If dim G = 4 and $\operatorname{rk} G = 2$, show that the center Z(G) either is \mathbb{S}^1 or $\mathbb{S}^1 \times \mu_2$. Show that G/Z(G) is isomorphic to SO(3).

Versjon: Thursday, October 18, 2012 4:18:07 PM

$$-3-$$