Notes 10: Consequences of Eli Cartan’s theorem.

Version 0.00 — with misprints,

The are a few obvious, but important consequences of the theorem of Eli Cartan
on the maximal tori. The first one is the observation that all maximal tori of a
compact group have the same dimension, and this common dimension is called the
rank of the group. It is always a lot smaller than dimension of the group which
considerably facilitates the study of groups. The famous Eg for example has rank 8
but is of dimension 248!

The second observation is the following
Proposition 1 If G is a compact, connected Lie group, then the exponential map
1S surjective.
PROOF: Since any g € G is contained in a maximal torus, and the exponential map
of a torus is surjective, it follows. a

This is certainly not true in general as we saw, SI(2, R) is a group with exponen-
tial map not being surjective. In fact, one can prove—at least for compact groups—
that the exponential map being surjective implies Cartan’s theorem about the maxi-
mal tori. Another easy consequence of Cartan’s theorem is the following:

Proposition 2 The set of elements of finite order in a compact group G, form a
dense subset.

PRrROOF: This is cerainly true for the circle and therefore for any torus. If g € G,
we may find a torus containing g, and hence a sequence of elements of finite order
converging to g. O

What follows is a lot more substantial then the two preliminary skirmishes. It is
about the structure of the centralisers of abelian subgroups. These centralisers, at
least a certain selection of them, play a decisive role in the further theory, and a lot
of the structure of the group is contoled by those designated centralizers.

Proposition 3 Let G be a compact Lie group. If ACG is any abelian, connected
subgroup, then the centralizer CgA is the union of the mazimal tori containing A,
i.e., CcA=U 1, 7. act L. In particular, if T is a mazimal torus, then CcT =T.
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PROOF: Assume that = € G centralizes A. Since CgA = Cg A, we may well assume
that A is closed. The closure H of the subgroup generated by x and A is closed and
abelian. Let Hy be its identity component. Then H/Hj is a finite group B that is
generated by the coset xHj. By lemma 1 below, H has a topological generator, say
t, and by Cartan’s theorem, t is is contained in a maximal torus. But then the same
holds true for the whole of H, and hence for x. a

Lemma 1 Let H be a compact, abelian Lie group with identity component Hy, and
assume that H/Hy is a cyclic group. Then H has a topological generator.

PROOF: Let x € H be such that the coset xH, generates H/H,. Since H/H, is a
finite group, ™ € H, for some m. Let t € Hy be a topological generator, and since
any torus is divisible, there are elements y € Hy with y™ = t. For any of those, yx
will be a topological generator for H. a

Recall that the centre Z(G) of G is the subgroup of elements commuting with every
element in G. As a members g of the centralizer centralizes any torus, it follows from
the proposition that ¢ is contained in any maximal torus. On the other hand, if ¢
lies in every maximal torus, it must commute with any x € G, since by Cartan’s
theorem x belongs to at least one maximal torus. Hence we have:

Proposition 4 The centre Z(G) of the compact, connected Lie group G consists
of the elements lying in every mazimal torus, i.e., Z(G) = (\pc o T where T' runs
through the maximal tori.

EXAMPLE 1. — THE CENTRE OF U(n) AND SU(n). The centre of the unitary
group U(n) is the circle S', i.e., the subgroup { A-ide» | [A| = 1}. Indeed, any vector
in C™ is the simple eigenspace of some element from U(n), hence if g is central, g
has v as eigenvector. Thus ¢ is a scalar matrix A - idge. Since g is unitary, |A| = 1,
and Z(U(n)) ~ S

In the case of SU(n), the reasoning is the same, except that the determinant of
g must be one. Hence \* = 1, and Z(SU(n)) ~ u,, the group of n-th roots of unity.
¥

EXAMPLE 2. — THE CENTRE OF THE ORTHOGONAL GROUPS. Any two-dimensional
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subspace of R" can be realized as one of the two-dimensional invariant subspaces of
a maximal torus in O(n). Hence if ¢ is in the centre of O(n), any two-dimensional
subspace is invariant under g, and, as long as n > 3, we see that g = \-idg» for some
real number A—indeed, if n > 3 any one-dimensional subspace is the intersection of
two-dimensional subspaces. Since g is orthogonal, g = Fidgn.

This shows that Z(O(n)) ~ ps, independently of the parity of n. However for
—idg» to have determinant one, n must be even. Therefore Z(SO(2m)) = uy and
SO(2m + 1) = {id}. Of course in case n = 2, as we know, Z(SO(2)) = S'. S

EXAMPLE 3. — THE CENTRE OF THE SYMPLECTIC GROUPS Sp(2m). As in the
previous examples, any one dimensional subspace of C?>™ can be realized as an
eigenspace of a subtorus of Sp(2m). This means that elements in the centre are scalar

matrices, and being symplectic, they are of the form +idcem. Thus Z(Sp(2m)) =~ ps.
S

The conjugacy classes.

The set of conjugacy classes of a group G plays a fundamental role when one un-
dertakes an analysis of its representations. The characters of the representations are
all class functions, hence functions on the set of conjugacy classes. We denote that
set by conj(G). Since the characters are continuous functions on G, we need a topo-
logy on conj(G) to single out the functions on conj(G) corresponding to continuous
class functions; the natural choice being the quotient topology. Let m: G — conj(G)
denote the map sending a group element g to the conjugacy class where it belongs.
The quotient topology on conj(G) has the property that for any f: conj(G) — X,
where X is any topological space, the map fom is continuous if and only if f is—and
that is exactly what we wanted.

Theorem 1 Let G be a compact Lie group and T'C G a mazimal torus. The mapping
¢ sending an element t € T to its conjugacy class in conj(G) induces a homeomor-
phism

c: T/W — conj(G) .

PROOF: Restricting the map 7 above to T gives us ¢, which therefore is continuous
since 7 is.

The content of the theorem of Eli Cartan is that c¢ is surjective. It is injective
if any two elements in 7', conjugate in G, in fact are conjugate in the normalizer
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N¢gT, and that is the content of the lemma below. One verifies that both spaces
are Hausdorff, and then ¢ is a homeomorphism by general properties of topological
spaces. d

Lemma 2 Assume that x and y are elements in T conjugate in G. Then there is
1

an element w € NgT with wyw™" = x.

PROOF: Let g € G be such that gzg~' = y. Then the conjugation map ¢, induces an
isomorphism Cg(x) and Ce(y). Now T'C Cg(z) is a maximal torus, and ¢,7C Ce(y)
is therefore a maximal torus in Cg(y). The maximal torus 7" is contained in Cg(y),
and must be conjugate to ¢,7" in Cg(y). Hence there is an element h centralizing y
such that gT'g~! = hTh™!, that is w = g~ 'h € NgT. Using that h centralizes 3, one

verifies

1

wyw ' =g thyhTtg = g 'yg = x.

o

The continuous functions on 7'/ are just the continuous functions on 7' that
are W-equivariant, i.e., satisfy f(wtw™') = f(t) for all w € W. The class functions
on G are just continuous functions on conj(G). Hence we get the following important
corollary where classfu(G) stands for the set of class functions on G.

Corollary 1 There is an isomorphism
classfu(G) =~ C(T)V

This is a step towards an isomorphism between the representation ring RcG of
G and ring RcT"W of invariants under the Weyl group in the representation ring of
T; and indeed it shows that RcGC RcT" . Furthermore, it follows that any complex
character on G comes from a class function on 7', but the question if it comes from
a character of a representation of T, is more subtle, even the weaker question if it
comes from a wvirtual character is subtle.

EXAMPLE 4. — VIRTUAL REPRESENTATIONS OF SU(n) AND U(n). In the case of
U(n), a maximal torus 7" is n-dimensional, and the ring of virtual representations
of T is RcT = Zlcy, o, .., Cny e, a polynomial ring in the ¢;’s localized in the
multiplicative system generated by the ¢;’s. Clearly, if we write d,, = c¢i1¢y. .. ¢, for
the product, then

ReT = Zlecy, . .., cn,d; ).

n
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The Weyl group of U(n) is the full symmetric group S, acting on T by permu-
tation of the coordinates. This action translates to the action on RcT permuting
the ¢;’s. Clearly d,, is an invariant element for this action. If we let o; be the i-th
elementary function in the ¢;’s, then o,, = d,, and RcT*" = Z[oy,...,0,,0, "], and
indeed one has

Proposition 5
ReU(n) = Z[oy,. .. 00,0,

PROOF: The challenge is to verify that all of the characters o;’s on T" are induced
from representations on G, i.e., that they all can be extended to the whole of G. In
the present case of U(n), we can, without to much effort, show that this is the case
because there are obvious candidates for those representations, namely the ezterior
powers of the basic representation V' = C" of U(n).

Let vy, ..., v, be a basis for V' that diagonalizes T'. For any subset I = {iy,...,%,}
of [1,n] with r elements, 1 < r < n, we let v; = v;; Avy, A... Av;,. In our
current context the order is of no importance, but for consistency we assume that
1 <dg < o0 <.

Each v; is an eigenvector for T' with character ¢;(t), hence v; is an eigenvector

,
for the induced action of T"on AV whose character is [[,; ¢;- But, the different v;’s

iel
T T
form a basis for AV as I runs through the subsets of [1,n], so the character of AV
restricts to 3,y [licy i = 07 in ReT.
The element v; AvgA. . .Av, gives us the determinant o,,, which must be invertible,

hence o, ! is the restriction of the character of AV. a

From this example one easily deduces the corresponding statement for SU(n). Having
in mind that any element in SU(n) has determinant one, the representation AV is
trivial, and therefore o,, = 1:

Proposition 6
RcSU(n) = Z[oy, ..., 0p-1].

Groups of rank one

It is a natural part of a theory to explore the cases when the parameters of the
theory are small. Usually one gets examples and it sheds some ligth on the general
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situation. In our case of maximal tori in compact groups, a first question could
be: What if the rank is one? Among the examples of groups we already have seen,
SU(2) and SO(3) are of rank one, and those two are, as we shall see, the only ones.
In addition to the light shedding, that fact is of great importance in the theory and
is repeatedly used.

Theorem 2 Let G be a compact, connected Lie group of rank one. Then either G
is isomorphisc to St or dim G = 3.

PROOF: Equip the Lie algebra Lie G with an inner product (v, w ) invariant under
the adjoint action, i.e., (Adyv,Ad,w) = (v,w) for all v,w € LieG and all g € G.
If you are a sceptic, convince yourself that such an inner product may be found by
averaging any inner product over the group against the Haar measure .

Let t € T be a topological generator, and let v € LieT' be a vector of norm one
with expv = t.

The orbit of v under the adjoint action is contained in the sphere S"71C Lie G,
hence there is a continuous map

o: G — S

sending ¢ to Ad,v (which we a priori do not know is surjective).

Since T is one dimensional, the inner product invariant and G connected, we
must have Ad;v = v for all £ € T. The map ® resembles very much the quotient
map G — G/T, and we are going to compare the two, and in fact, the crux of the
proof is to show they are equal!

By what we just said Adgv = Ad;Adyw = Adgv for g € G and ¢t € T. Hence ®
is constant on the cosets ¢7', and we get a continuos map ¢ as in the commutative
diagram

G L) Sn—l

el

We shall establish that 1 is an diffeomorphism:

® The map ¥ is injective.
We must show that if Ad,v = Adyv, then htg € T. Let a = h™'g, then Ad,v = v.
Since T is its own centraliser by proposition 3 on page 1, it suffices to show that
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h~1g centralises the topological generator ¢ of T', but this follows from

-1

ata” " = aexp va~t = exp Ad,v = expv = t,

where the equality marked with a star follows from a standard property of the
exponential map.

@ The map v is surjective, and hence a diffeomorphism.
Both spaces S"™! and G/T have a right action of G, under which the map 1) is
equivariant. Hence, by a standard translation argument, v is of constant rank. Since
it is injective, the rank is n — 1 by Sard’s theorem. By the inverse function theorem,
1 is therefore an open map, diffeomorphic onto is image, and since G /T is compact,
1 is also closed. So 1(G/T) is both open and closed, hence equal to S*™!, the sphere
being connected.

Finally, since dim G = dim T = 1 mod 2, it can not happen that dim G = 2.
If dimG = 1, then G = T. So assume dim G > 3. . The long exact sequence of
homotopy groups from the fibration G — G/T has a portion looking like:

7T2Sn_1 7T1S1 7T1G ngn_l

and as n > 3, mS" ! = mS"! = 0. Hence the inclusion S'C G induces an isomorp-
hism between the fundamental groups. Now by teh sutjectivity og ®, there ia an
h € G with Adpv = —v. Then ¢,(t) = hth™' = ¢!, and ¢, induces multiplication
—1 in m;St. However, as G is connected, ¢ is homotopic to the identity in G, and

this contradicts the inclusion T'C G inducing an isomorphism of fundamental groups.
a

Corollary 2 If G is a compact, connected Lie group of rank one, then G is isomor-
phic to either S*, SU(2) or SO(3). Hence if G is not commutative, its Weyl group
W is of order two; i.e., |W| = 2.

PROOF: If GG is not the circle, then dim G = 3 by the theorem. By fitting out the
the Lie algebra Lie G with an inner product invariant under the adjoint action, one
obtains a homorphism G — SO(3). The derivative at the unit is ad,: LieG —
Lie SO(3)C Homg(Lie G, Lie G). We do claim that this derivative is injective, and
hence it is an isomorphism since dimensions match. If ad,w = 0 for all w € Lie G,
then

w = exp ady,W = AdexpupW
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for all real u, and it follows that the one parameter subgroup exp uv is central, thus
contained in 7". And since dim 7" = 1, it must be equal to T". But if a maximal torus
is central, the group is commutative by Cartan’s theorem.

By a standard translation argument, our map is then a covering, and as SU(2)
is the universal cover of SO(3), we conclude that G is isomorphic to either SO(3) or
SU(2). a



