
Notes 11: Roots.

Version 0.00 — with misprints,

Intro

Notation and teminology

The story about the roots can be very confusing fort the uninitiated, it is a
field where terminology and notational convention flourish, and there is a multitude
of avatars of the roots, complex roots real roots, dual roots, inverse roots. Not to
get lost in this jungle of terminology, one must pay the price of being precise to
boredom. So we start this section with a detailed but hopefully clarifying recap of
the terminology.

The character: A character of a torus is a group homomorphism χ : T → C∗. As
S1 is the only compact, connected subgroup of C∗, considering χ as a map χ : T → S1,
does not add to the confusion. If V is a complex, one dimensional representation of
T , there is a canonical1 character χ : T → AutC(V ) = C∗.

The weight or the root: A character has a derivative at the unit element
θ = deχ, or if you want, this is the Lie-functor applied to χ. The derivative is a
linear map θ : LieT → Lie S1, and it is canonical.

The real vector space LieS1 is equal to the imaginary axis in C, and after having
chosen one of the two imaginary units i or −i, one has an identification LieS1 = iR.
The map θ : T → iR is simply called the weight of the representation. In the case
the representation is one occurring in the adjoint action of T on LieG, it is called a
root.

The complex weight or complex root: The complexified map Θ = θ⊗ idC
is called a complex weight or a complex root in the case of the adjoint action.

The real weight or real root: Finally, α = 1
2πiθ is called a real weight or a

real root. It is linear map α : LieT → R, that is, a linearfunctional on LieT . It fits

1Indeed, if V is a one-dimensional vector space, the identity is a basis for Aut(V ), as canonical
as can be.
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into the commutative diagram

0 !! NT
!!

""

LieT
exp

!!

α
""

T !!

χ
""

1

0 !! Z !! R e !! S1 !! 1

(!)

where e is the map e : R → S1 with e(t) = e2πit. We see that α takes integral values
on the integral lattice NT .

The adjoint action
The maximal torus T acts on the Lie algebra LieG of G by the adjoint action.

Under this action LieG decomposes into a direct sum of irreducible real T -modules,
the trivial part being equal to LieT as we saw in Notes 9, proposition 3:

LieG = LieT ⊕
⊕

α∈R+

Vα (")

The α’s runs through all real weights on T . A priori there might be repetitions
among them. To avoid even more notation, we adopt the convention that Vα is the
isotypic component belonging to the root α. Then the subspace Vα is canonically
defined. Notationaly, it turns out to be advantageous to adopt the notation Vα for
the isotypic part corresponding to the character χα(t) = e2πiα(t), even if α is not
among the roots, but of course then Vα = 0. Later on, proposition 1, we shall see
that all the α are of multiplicity one.

As Vα % V−α there is an ambiguity in the indexing of components in the decompo-
sition ", but as will see, the ambiguity disappears when we complexify the algebra.
We let R denote the set of all the real roots that are involved in the decomposition,
including both of the opposite roots α and −α. If one root from each opposite pair
is singled out, in one way or another, we denote the resulting set by R+.

The complex Lie algebra of G is just the complexified Lie algebra LieC G =
Lie⊗R C. It has a decomposition inherited from the one (") above:

LieC G = LieC H ⊕
⊕

α∈R+

(Mα ⊕M−α). (#)

— 2 —
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There is of course a tight relationship between the real modules Vα and the complex
ones. Indeed, the complexification Vα ⊗R C decomposes as Mα⊕M−α, and Vα is the
real part of Mα ⊕ M−α, that is Vα = (Mα ⊕ M−α) ∩ LieG. The characters of the
two T -modules Mα and M−α are denoted by χα and χ−α respectively, the relation
to the real roots ±α being that χ±α(t) = e±2πiα(t).

The infinitesimal version of the adjoint action of the maximal torus T on LieG,
is the action of LieT on LieG given by ad$; that is, an element v ∈ LieT acts as
the endomorphism w (→ [v, w]. The Jacobi identity guarantees that this is an action
Lie algebras:

[[v, u], $] = [v, [u, $]]− [u, [v, $]].

The relation between the action of T and the infinitesimal action of LieT is
expressed in the following lemma:
Lemma 1 Let α be a real root. For each non-trivial v ∈ LieT the isotypic compo-
nent Mα of LieC G is the subspace such that [v, w] = 2πiα(v)w for all w ∈ Mα—that
is the eigenspace for [v,−] with eigenvalue 2πiα(v).
Proof: By definition, Adhw = χα(h)w for all h ∈ T and all w ∈ Mα, that is

exp adtvw
$
= Adexp tvw = χα(exp tv)w = e2πitα(v)w

for all v ∈ LieT and all t ∈ R, where the equality marked with a star is one of
the basic formulas for the exponential map (see proposition 6 on page 9 in Note 4).
Taking the derivative at zero with respect to the real variable t, we get the lemma
since exp adtvw = w + t[v, w] + o(t2), and e2πitα(v) = 1 + 2πitα(v) + o(t2). $

An extremely useful relation is the following:

Lemma 2 Let α and β be two real roots. If a ∈ Mα and b ∈ Mβ, then [a, b] ∈ Mα+β.

Proof: This is a direct consequence of the Jacobi identity. Let v ∈ LieT , a ∈ Mα

and b ∈ Mβ. We have

[v, [a, b]] =− [b, [v, a]]− [a, [b, v]] = 2πiα(v)[a, b] + 2πiβ(v)[a, b] =

=2πi(α(v) + β(v))[a, b].

$

— 3 —
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Kernels of the characters
The characters χα occurring in the decomposition of the complex Lie algebra

LieC G are group homomorphism χα : T → S1, and they play a fundamental role
in what follows. Their kernels are denoted by Uα. These kernels are subgroups of
T whose connected components are subtori of codimension one, but they do not
need be connected (see example 1 below). The Lie algebras Hα = LieUα form a
system of hyperplanes in LieT , a system being a decisive ingredient in the geometric
and combinatorial set up called the root system of G. The interplay between these
hyperplanes and the action of the Weyl group on LieT , did turn out to be extremely
fruitful in the analysis of Lie groups.

Example . — In SU(2) the Uα are not connected.. Let G = SU(2), and
let T be the maximal torus with elements

h =

(
z 0
0 z

)

where z ∈ S1⊆C. The Lie algebra su(2) consists of the anti-hermitian matrices, so

v =

(
0 a
−a 0

)

is there. One computes

Adhv =

(
z 0
0 z

)(
0 a
−a 0

)(
z 0
0 z

)
=

(
0 z2a

−z2a 0

)

So for both the two roots of SU(2), the kernel Uα will be µ2. %

The fundamental relation e2πiα(v) = χα(exp v), shows that the Lie algebra LieUα

equals the kernel of α. Digaramholics can enjoy the following commutative diagram
that has exact rows and columns:

0

""

1

""

Hα
exp

!!

""

Uα
!!

""

1

0 !! NT
!!

""

LieT
exp

!!

α
""

T !!

χ
""

1

0 !! Z !! R e !! S1 !! 1

(&)
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Reflections
Recall that if H⊆L is a hyperplane in a real vector space L, then a reflection

through H is a non-trivial linear involution s : L → L such that s(v) = v for all
v ∈ H. As s is of finite order, in fact two, it is a semi simple endomorphism and
consequently there is a basis for L consisting of eigenvectors for s. The vectors from
H are all eigenvectors with eigenvalue 1, and in addition, there is a one dimensional
eigenspace H− with the eigenvalue −1.

Later on we shall for each root α ∈ R exhibit an element sα from the Weyl group
acting as a reflection through the hyperplane Hα. These reflections play a prominent
role in the theory. One elementary but very useful result about reflections is the
following.

Lemma 3 Assume that α is linear functional on the vector space L and that sα is
a reflection through the kernel Hα = Kerα. Then there is a unique vector vα ∈ L
such that

sα(v) = v − α(v)vα (')

for all v ∈ L. The vector vα satisfies α(vα) = 2, and vα = v−α.

Proof: If v ∈ Hα = Kerα, then ' is obviously satisfied, sα being a reflection in
Hα.

Let u be one of the vectors in the one-dimensional eigenspace of sα with eigen-
value −1. We’ll determine a scalar a such that au satisfy the equation '. For this
to happen, we must have −u = sα(u) = u−α(u)au, giving 0 = (2−α(u)a)u, hence
a = 2α(u)−1, where we use that α(u) *= 0 since u *∈ Hα. $

In the situation in the lemma with a linear functional α and a reflection in the
kernel Hα = Kerα, there is a canonically associated dual situation, with the dual
space L∗ = HomR(L,R) being the space where the reflection takes place.

Any element v ∈ L can be interpreted as a linear functional v$ on L∗, namely the
functional one could call “evaluation at v”, that is, the one defined by v$(β) = β(v).
Think of L∗ as the vector space we work in and where we want the reflection to take
place. The two elements of the pair α and vα interchange their roles; vα becomes the
linear functional “evaluation at vα”. The kernel is the hyperplane Hv!α with members

— 5 —



Notes 11: Roots MAT4270 — Høst 2012

the β’s in L∗ vanishing on vα. And α becomes the element. The reflection sα induces
a map sα∗ : L∗ → L∗ by the rule sα∗(β) = β ◦ sα. One easily get the relation

sα∗ (β) = β − v$α(β)α

indeed, just apply β two the relation ' above.
One often uses a scalar product on L such that the reflection s is orthogonal.

Then of course vα is orthogonal to Hα.

Defining the reflections sα
We now proceed to search for the reflections sα in the Weyl group of G. The clue

is to study the centralizers of the groups Uα. We shall show, in theorem 1 below,
that these centralizers are connected (even though Uα is not necessarily connected)
and that their Weyl groups all are of order two. As Uα⊆T , the torus T is contained
in the centralizer CGUα, and in fact it is a maximal torus, being one in G. The
corresponding Weyl group of Uα is contained in the Weyl group W of G — the
lifting of any of its elements to CGUα normalizes T — and being of order two, it
gives us the non-trivial involution sα.

Before starting, we observe that since sα lifts to an element in the centralizer of
Uα, it acts trivially on Uα.

It is natural to start the study of centralizers by describing the Lie algebra of
the centralizer of an element, that we later will apply to topological generators of
various groups.

Lemma 4 If x ∈ T , then the Lie algebra of the centralizer CG(x) decomposes as
LieCG(x) = LieT ⊕

⊕
α∈S Vα where α ∈ S if and only if x ∈ Uα.

Proof: Recall that
x(exp v)x−1 = expAdxv.

It follows that if Adxv = v, then exp v centralizes x. Suppose then that exp tv
centralizes x for all t ∈ R. Taking the derivatives at t = 0 of the two sides of the
equation

exp tv = x(exp tv)x−1 = expAdxtv = exp tAdxv,

we obtain v = Adxv. We have established that exp tv centralizes x for all t if and
only if Adxv = v. This means that v lies in the eigenspace of x with eigenvalue one,
and that is exactly LieT ⊕

⊕
α∈N Vα. $

— 6 —
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Theorem 1 Suppose that G is a compact connected Lie group and that T⊆G is a
maximal torus.

Let α be one of the real roots of T , and denote by Uα of the character χα. Then
the centralizer CG(Uα) is connected and is of dimension rkG + 2. It has the Lie
algebra LieCG(Uα) = LieT ⊕ Vα ⊕ V−α, and the Weyl group of CG(Uα) is of order
2.

Proof: Denote by U the identity component of Uα. To begin with, we shall establish
the theorem for U , and then at the end of proof we will show that CGUα = CGU .

So, pick a topological generator u for U . First we remark that CG(u) = CGU is a
connected group being the union of connected groups with nonempty intersection as
described in proposition 3 on page 1 in notes 10. As u ∈ U⊆T , the maximal torus
T is contained in CG(u) and of course is a maximal torus there.

The main point of the proof, is to factor out the subgroup U of T to obtain the
inclusion T/U⊆CG(u)/U , and then observe that CG(u)/U is of rank one, T/U being
a maximal torus. We then apply the theorem about groups of rank one (theorem2
on page 6 in Notes 10), that tells us that dimCG(u)/U = 3, unless T/U = CG(u)/U .
But the latter is not the case, since by lemma 4 both Vα and V−α are contained in
LieCG(u), and therefore dimCG(u) ≥ rkG+ 2.

It follows that dimCG(u) = dimCG(u)/U + dim U = rkG+ 2. From theorem 2
in Notes 10 we also get that the Weyl group of CG(u)/U is of order 2, but this Weyl
group is the same as the one of CG(u), U being contained in the normalizer of T .

Rests the claim that CGUα = CGU . The salient point is that any closed subgroup
of T of codimension one, has a topological generator. Indeed, if A is such a subgroup
and A0 denotes the identity component, then A/A0 is a finite subgroup of T/A0 ≈ S1,
but any finite subgroup of S1 is cyclic, and we conclude by lemma 1 on page 2 in
Notes 10.

To finish the proof, let u be a topological generator of Uα. Then CGUα =
CG(u)⊆CGU . By lemma 4 dimCGu ≥ rkG + 2, which implies the desired equa-
lity as CGU is connected and of dimension rkG+ 2. $

An important consequence of the above reasoning is the following saying that the
real roots are simple and that no other root than −α is proportional to α.

Proposition 1 In the above setting, the representations Vα and V−α occurs just
once in the decomposition of LieG in irreducible T -modules. Furthermore for any
real number r not equal ±1, the functional rα is not among the real roots.

— 7 —
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z1 0
0 z2

0 w
−w̄ 0

Figur 1: The centralizing the 2× 2-block and the factor Vα ⊕ V−α in LieU(n).

Proof: By lemma 4 the isotypic components of both Vα and V−α are entirely
contained in LieCGUα, but as dimCGUα = rkG + 2, they are both of dimension
one. If rα were a real root, then Uα ∩ Urα *= ∅, and by lemma 4 the representation
Vrα would be contained in LieCGUα which is impossible unless Vrα % V±α, that is
r = ±1. $

Example . — U(n). It might be helpful to have an example in mind when reading,
and in this case the simplest case of U(n) is illustrative. Recall that a maximal torus
T of U(n) is the set of diagonal matrices D(x) with exponentials of the form e2πixi(x)

along the diagonal, where x = (x1, . . . , xn). As long as the all the diagonal elements
are different, the centralizer of D(x) is T itself, but at the moment when two become
equal, D(x) is also centralized by the corresponding full 2 × 2-block. For example
if e2πix1 = e2πix2 , the upper left 2 × 2-block will centralize D(x). This subgroup is
isomorphic to U(2), but the quotient CU(n)Uα/T is isomorphic to SU(2) since the
determinant can be absorbed in T , i.e.,any g ∈ U(2) may be written g = det

√
g · g′

with an g′ ∈ SU(2).
The corresponding roots are α = x1 − x2 and −α = x2 − x1, and the characters

are χα = e2πi(x1−x2) and χ−α = e2πi(x2−x1).
Making this argument for each pair of diagonal elements in T , we can conclude

that the roots of U(()n) are ±xi ± xj for 1 ≤ i < j ≤ n, altogether 2n(n− 1) roots.
%

Example . — SO(4). The group SO(4) is of rank two and dimension six, so we
are looking for four roots. The group has a maximal torus consisting of the matrices

— 8 —
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with 2× 2-blocks of the form
(
cos 2πxj − sin 2πxj

sin 2πxj cos 2πxj

)
(!)

along the diagonal. As usual, to simplify the calculations, we go complex. The com-
plexified Lie algebra LieC SO(4) consists of anti symmetric complex 4× 4-matrices.
They can naturally be divided in two categories:

X =

(
D1 0
0 D2

)
and Y =

(
0 M

−M t 0

)

where those to the left form the subalgebra LieT of LieG, and those to the right
constitute the part of LieG where T acts non trivially, that is the direct sum of the
non-trivial root spaces. The matrix M can be any 2× 2-complex matrix, and each
Dj is of the form

D =

(
0 −z
z 0

)

with z replaced by zj. We may well take them real, and they are linked to the
coordinate xj of LieT by zj = 2πxj. The bracket [Y,X] is given by the formula

[Y,X] =

(
0 D1M −MD2

−(D1M −MD2)t 0

)

as one readily verifies.
We introduce the two complex matrices

A =

(
1 i
−i 1

)
and B =

(
1 i
i −1

)

Then A,A,B,B is a basis for the part of LieC G where T acts non-trivially, Doing
the matrix multiplications, we find that

DA = AD = izA −DB = BD = izB,

and using this we get

D1A− AD2 = 2πi(x1 − x2)A and D1B − BD2 = 2πi(x1 + x2)B.

Conjugating this equation, we have

D1A− AD2 = −2πi(x1 − x2)A and D1B − BD2 = −2πi(x1 + x2)B.

— 9 —
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Hence the four roots of SO(4) are ±x1 ± x2.
It is not very hard to generalize this to all the special orthogonal groups SO(2m)

of even dimension. The maximal torus still has blocks like the ones in ! above along
the diagonal. The essential computations goes just like what did above, one only
has to position the block Y correctly in the matrix, as shown in the figure below
where the indices i and j refer to the i-th respectively j-th 2 × 2-block. One finds
that SO(2m) has the 2m(m− 1) roots ±xi ± xj for 1 ≤ i < j ≤ m. %

i

j

i j

Di Y

−Y t Dj

Example . — SO(5). The group SO(5) has rank two and dimension ten, hence
it has eight roots. It is contained in SO(4), and the two groups share the maximal
torus described above. Therefore the roots of SO(4) are also roots of SO(5). In fact,
there is an inclusion Lie SO(4)⊆ Lie SO(5), and as the maximal torus is the same,
the only difference between the two Lie algebras is two new pair of roots in the
bigger one.

To trap those, we introduce the matrices

C =




0 0 1
0 0 −i
−1 i 0



 and D =




0 −z 0
z 0 0
0 0 0





with some effort, one finds after some computations that

[D,A] = 2πiC.

So by positioning the matrices Di—which are the matrix D with z replaced by
2πxi—and C correctly in the 5 × 5-matrix, one sees that the four extra roots are
±x1 and ±x2.

The same argument, with the obvious modifications, shows that the special ortho-
gonal groups SO(2m + 1) have the roots ±xi ± xj for 1 ≤ i < j ≤ m and ±xi for
1 ≤ i ≤ m. There are 2m(m− 1) of the first kind and 2m of the second, altogether
2m2. %

— 10 —
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An integrality property
There are some very strong conditions on the roots that limit the possible root

systems considerably. They are really at the hart of the classification of the semi
simple Lie groups.

The strongest one is the integrality condition we will establish in this paragraph.
Recall that the kernel of the exponential map NT⊆T is called the integral lattice,

and it sits in the usual commutative diagram

0 !! NT
!!

""

LieT
exp

!!

α
""

T !!

χα

""

1

0 !! Z !! R e !! S1 !! 1

Proposition 2 Assume that α is a real root for T . Then the vector vα lies in the
integral lattice; i.e.,vα ∈ NT .

If β is another real root T , then β(vα) ∈ Z.
Proof: The last statement follows immediately from the first, in view of the dia-
gram above with α replaced by the root β.

To prove the first, let w ∈ LieT be a the vector with 2w = vα so that α(w) =
1. Then e(α(w)) = 1, and expw ∈ Kerχα = Uα. Now exp(−w) = exp(sαw) =
sα expw = expw since sα acts trivially on Uα. It follows that exp vα = exp 2w = 1.

$

Root systems
There is an axiomatic description of the root systems that arise in in the theory

of Lie groups.
Let V be a real vector space whose elements we will denote by lower case greek

letters. The dimension of V is denoted by k, and we assume that V is equipped with
an inner product 〈α, β 〉.

For any non-zero vector α ∈ V the hyperplane orthogonal to α will be denoted by
Hα, and, of course, it is the kernel of the linear functional α∗ : β (→ 2 〈α, β 〉 / 〈α, α 〉.

The reflection through Hα is the map defined by the equation

sα(β) = β − 2
〈α, β 〉
〈α, α 〉α. (")

— 11 —
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One easily checks that the map sα has two orthogonal eigenspaces: the hyperplane
Hα corresponding to the eigenvalue 1 and the one-dimensional span 〈α 〉 correspon-
ding to the eigenvalue −1. It follows that sα is an orthogonal involution.

A finite set R of vectors from V is called a root system if the following three
criteria are fulfilled:

i) The elements in R span V , and 0 *∈ R.
ii) If α ∈ R then −α ∈ R, and −α is the only other vector in R proportional

to α .
iii) If α ∈ R, then the reflection sα takes R into R
iv) If β ∈ r, then sα(β)− β is an integral multiple of α.
The elements of R are called roots and the dimension of V is the rank of the root

system. The subgroup of the orthogonal group O(k) generated by the reflections is
called the Weyl group of the root system and denoted W .

It is clear what a map between two roots systems R⊆V and R′⊆V ′ should be.
It is an orthogonal map φ : V → V ′ taking R into R′, and, of course, the systems
are said to be isomorphic if the map is invertible and induces a bijection between R
and R′.

Example . — The root system of a Lie group. For any compact, connected
Lie group G with a maximal torus T , the corresponding real roots form a root system
in the dual LieT ∗ of the Lie algebra of G—at least if they span. If that is not the
case, they form one in the subspace they span. By virtue of prop xxx, the real roots
span LieT ∗ if and only if the centre Z(G) is finite.

Indeed, there is an inner product on LieT invariant under the Weyl group: To
get one, as usual, take any inner product and average it over W . This inner product
induces an inner product on the dual space LieT ∗, by demanding that the dual basis
of any orthonormal basis be orthonormal. The first criterion is fulfilled by definition,
number ii) is a consequence of proposition 1 on page 7, the third criterion holds true
since the reflections sα are members of the Weyl group and therefore permutes the
roots. Finally, prop 2 on page 11 guaranties that the last criterion is satisfied.

%

For any pair of roots α and β the numbers nαβ = 2 〈α, β 〉 / 〈α, α 〉 are integers
by the condition iv). They are called the Cartan numbers of the root system, and
there are very strong restrictions on their values.

Substituting 〈α, β 〉 = ‖α‖ ‖β‖ cos θαβ, where θαβ is the angle between α and β,
we obtain

nαβ = 2
‖β‖
‖α‖ cos θαβ,

— 12 —
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and consequently there is the relation

nαβnβα = 4 cos2 θαβ.

Hence 0 ≤ nαβnβα ≤ 4, and if nαβnβα = 4, the angle θαβ is 0 or π, and β = ±α. If
the product nαβnβα < 4 at least one of the integers nαβ or nβα have to be of absolute
value less than one. With out loss of generality, one may assume that |nαβ| ≤ 1, and
it is then easy to find all possible values of nβα. They are listed in the following
table, where the last row contains the ratio between the square lengths of the roots:

nαβ 0 1 -1 1 -1 1 -1
nβα 0 1 -1 2 -2 3 -3
θαβ π/2 π/3 2π/3 π/4 3π/4 π/6 5π/6

— 1 1 2 2 3 3

We have the following proposition:

Proposition 3 Assume that α and β are non-proportional roots forming an acute
angle, that is 〈α, β 〉 > 0. Then the difference α− β is a root.

Proof: As nαβ > 0, either nαβ = 1 or nβα = 1. In the first case sα(β) = β−α, and
in the other sβ(α) = α− β. $

The product of two root systems Assume V1 and V2 to be two vector spaces
each equipped with an inner product. For each i = 1, 2, let Ri be a root system in
Vi. In the orthogonal sum V1 ⊕ V2, the disjoint union R1 ∪R2 will be a root system.
It is called the product of the two systems. Vice versa, given a root system R in V ,
if there is a disjoint decomposition of R as R = R1∪R2 in mutually orthogonal sets,
then V will be equal to the product of the two root system Ri in Vi where Vi is the
linear span of Ri. The Weyl group of the product is the product of the Weyl groups
of the two root systems. A root system is called irreducible if it is not equal to a
product of two smaller systems.

Example . — rank one. Then by property 2, R = {e1,−e1}. Even if simple,
this system has a name. It is called A1 the Weyl group is Z/2Z. It is the root system
of the Lie groups of rank one, and we know there are two, SU(2) and SO(3).

−e1 e1

— 13 —
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%

Example . — Rank two — A1 ×A1. The number of roots is four and they are
±e1,±e2. The roots can be split into two orthogonal sets and the system reducible.
The Weyl group is the Klein four group Z/2Z × Z/2Z. The group SU(2) × SU(2)
has this root system.

Figur 2: The root system A1 × A1 (left) and SO(4) (right)

%

Example . — Rank two—SO(4). The number of roots are four: ±x1±x2, and
as we saw in example 3 these are the roots of SO(4). The system is decomposable
and clearly equivalent to A1 × A1. This indicates a strong connection between the
two groups SO(4) and SU(2)×SU(2), and indeed, as we later will show, the universal
cover of SO(4) is SU(2) × SU(2), a relationship often expressed by saying there is
an isomorphism Spin(4) % Spin(3)× Spin(3). %

Example . — Rank two—B2. This root system has the eight roots±e1,±e2,±e1+
±e2. Four short ones, and four long ones, a factor

√
2 longer than the short. Its Weyl

group is the Dihedral group D8, and this is the root system of the orthogonal group
SO(5). %

Example . The six roots are ±(e1 − e2),±(e1 − e3),±(e2 − e3). The Weyl group
is the symmetric group S3 which is the same as the dihedral group D6, and this is
the root system of SU(3). The roots are drawn in the plane x1 + x2 + x3 = 0 in R3.
%

Example . — Rank two— G2. This root system is an interesting case, being
the root system of the the so called exceptional groups. The dimension of the group
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Notes 11: Roots MAT4270 — Høst 2012

Figur 3: The two root systems B2 (to the left) and A2 (to the right)

G2 is 14. It is the smallest of the exceptional groups, but even with such a simple
root system, the group is not trivial to define. There are 12 roots ±(e1− e2),±(e1−
e3),±(e2−e3),±(2e1−e2−e3),±(−e1+2e2−e3),±(−e1−e2+2e3), all in the plane
x1 + x2 + x3 = 0. Six of the roots are short and six long, the longer being longer
with a factor of

√
3.

One may think about the G2-system as the superposition of two A2-systems, but
one rotated by an angle π/6 and scaled by at factor

√
3 compared with the other.

The Weyl group is the dihedral group D6. %

Figur 4: The root system G2

Bases of root systems. Let us fix a linear functional φ on V . As we work with
a fixed inner product on V , the functional φ can be identified with φ(β) = 〈wφ, v 〉.

— 15 —



Notes 11: Roots MAT4270 — Høst 2012

The functional separates V in two to half spaces T+ and T− where the functional
takes respectively positive and negative values. The frontier between the half spaces
is the hyperplane T 0 where φ vanishes. The functional φ is assumed not to vanish at
any root α ∈ R. The roots in the half space T+ are called positive roots and the set
they form is denoted by R+. The counterpart is the set R− of negative roots, that
is, those in T−. As the roots always come in pairs α and −α, there are as many
positive as negative roots.

It is important to remember the fact that the sets of positive and negative roots
depend on the choice of the functional φ.

A subset S⊆R+ is said to be a basis for the root system if the elements of S are
linearly independent, and if any β in R can be written

β =
∑

α∈S

mαα

where the coefficients mα are integers either all satisfying nα ≥ 0 or all satisfying
nα ≤ 0. The elements of S are also called simple roots, and the reflection sα is a
simple reflection if α is a simple root. A root α ∈ R+ is indecomposable in R+ if it
can not be expressed as sum α = β + γ with α and β in R+. Every root system has
a basis, or more precisely:

Proposition 4 The set S of indecomposable roots in R+ is a basis.

Before giving the proof, we observe that any basis is of this type. Indeed, if a
basis is contained in some set of positive roots R+, then certainly the indecomposable
must be members. And as the elements of the basis are linearly independent, they
are at most as many as dim V in number, and there are linear functionals taking
prescribed positive values on them. Now to the proof of the proposition:
Proof: Recall that φ denotes the functional that divides V into a positive and a
negative half space.

In the finite set of positive roots not being the sum of elements from S there is, if
any at all, a root α with φ(α) minimal. Since α *∈ S, it is decomposable in R+, that
is, it is expressible as a sum α =

∑
αi with the αi’s from R+ all different from α.

But then the sum φ(α) =
∑

φ(αi) has all terms positive, and there is at least two
terms. Hence each φ(αi) < φ(α), and by induction, every αi is a sum of elements
from S.

To check that the elements in S are linearly independent, we make use of the
following lemma, where the hypothesis of the angle between any pair α and β from
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S being obtuse, is fulfilled, since if not, α− β is a root by proposition 3 on page 13,
and hence either α or β decomposes in R+. $

Lemma 5 If any two elements of a set S⊆V make an obtuse angle, and they all
lie in the same half space, the elements of S are linearly independent.

Proof: Recall that a half space is the subset of V where a functional φ takes on
positive values, and that α and β make an obtuse angle, means that 〈α, β 〉 ≤ 0.

A potential dependence relation between elements from the set S may be written
as ∑

i∈I

aiαi =
∑

j∈J

ajαj (()

where the sets {αi}i∈I and {αj}j∈J are disjoint subsets of S, and all the ai’s and
aj’s are positive real numbers. If we denote by x the common value of the two sides
in equation ( we have 〈 γ, γ 〉 =

∑
i,j aiaj 〈αi, αj 〉 ≤ 0. Hence x = 0. On the other

hand

φ(x) =
∑

i∈I

aiφ(αi) > 0,

so no dependence relation can be. $

Weyl chambers
What we have done so far, is to show that given a linear functional φ ∈ V ∗

not vanishing at any root, we get a uniquely defined basis for the root system: The
functional determines the set R+ of positive roots, and the set of indecomposable is
certainly determined by R+.

If we change the functional, the set of positive roots and the basis will in general
be different. However, as long as the set of positive roots remains the same, the basis
remains the same. This means that as long as the values φ′(α) have the same signs
as φ(α) for all α ∈ R, the positive roots and the basis determined by two functionals
φ′ and φ are the same. This motivates the definition:

KS = {φ ∈ V ∗ | φ(α) > 0 for all α ∈ S },

and this is called the fundamental Weyl chamber associated to the basis S.
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For any root α in R we let Hα⊆V ∗ denote the hyperplane in V ∗ consisting of the
linear functionals vanishing on α. The finite set R of roots determine a decomposition
of V ∗ into so called chambers. The subset of V ∗ of functionals not vanishing at any
of the roots, that is V ∗ \

⋃
α∈R Hα, decomposes into a disjoint union of its connected

components, and these components are called the Weyl chambers. They are convex
cones, open in V ∗. The boundary of a Weyl chamber K is the union of closed, convex
cones with nonempty interior in some of the hyperplanes Ha. They are called the
walls of K.

Proposition 5 Every Weyl chamber is the fundamental Weyl chamber of a unique
basis. Hence there is a one-one correspondence between bases and Weyl chambers.

Proof: We have already done most of this proof and seen that any basis has a
fundamental Weyl chamber. If K is a Weyl chamber, pick any linear functional
φ ∈ K. Then the indecomposable roots in the set of positive roots corresponding to
φ is a basis with KS = K, and it is the only basis with this property. $

The action of the Weyl group
We have seen that a root system has bases and that the bases correspond to the

Weyl chambers. The next natural thing to do is to get some understanding of how
many bases and chambers there are, and what kind of base changes can take place.
The answer lies in the action of the Weyl group:

Theorem 2 The Weyl group acts freely on the set of Weyl chambers and on the set
of bases.

For the action to be free it must satisfy two criteria. Firstly, it must be transitive,
meaning that for any pair of chambers K and L there is an element w of the Weyl
group carrying K to L. Secondly, the action must be free for isotropy: The only
w ∈ W fixing a chamber is the identity, i.e.,if wK = K for a chamber K, then
w = 1.

Establishing that the action of the Weyl group does answer to these two demands,
requires some effort and some lemmas. The first one is the following which says that
if α is a simple root, then the reflection sα, a part from α it self, permutes the
positive roots:
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Lemma 6 If sα is a simple reflection and β is a positive root different from α, then
sαβ is a positive root.

Proof: We may express β =
∑

γ∈S nγγ where nγ ≥ 0. As β *= α, at least for one
γ *= α we have nγ > 0, say γ0. But then in the expression

sαβ = β − nαβα =
∑

γ∈S,γ %=α

nγγ + (nα − nαβ)α

the coefficient of γ0 is nγ0 , and nγ0 > 0. The set of roots S being a basis, one
coefficient being positive implies that all are, and hence sαβ ∈ R+. $

Lemma 7 For any root β there is a simple root α and a sequence of simple re-
flections carrying α to β

Proof: The lemma will be proved for positive roots, it being easy to reduce the
general statement to that case. One may write

β =
∑

γ∈S

nγγ with nγ ≥ 0. ())

The proof will be by induction on h(β) =
∑

γ∈S nγ. If h(β) = 1, the root β is simple,
and there is nothing to prove. If not, at least two of the coefficients in ) are strictly
positive, since a nontrivial and positive multiple of a positive root is not a root. Let
γ0 be one of them. Then h(sγ0β) = h(β − nγβγ0) < h(β). Furthermore, sγ0β is still
a positive root since the other strictly positive coefficient in the expression ) does
not change when the reflection sγ0 is applied. By induction, there is a simple root α
and a sequence of simple reflections whose composition w is such that wα = sγ0β.
Consequently β = sγ0wα, and we are done. $

Proposition 6 The Weyl group W is generated by simple reflections.

Proof: By definition W is generated by reflections sβ for β ∈ R. But given β,
the lemma gives us a simple root α and a sequence of simple reflections whose
composition w is such that β = wα. Thence sβ = wsαw−1. $
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Proposition 7 If an element w ∈ W is such that wR+ = R+, then w = 1

Proof: Since W is generated by simple reflections, w can be written as w =
srsr−1 . . . s1 where each si is a simple reflection, and where r is minimal, i.e.,no
such factorization in fewer simple reflections may be found. We have sr = sα for
a simple root α. Follow the root γj = sjsj−1 . . . s1α as j increases. It starts out in
R+, but at a certain point it is carried into R−. That swapping is performed by a
simple reflection sγ. We thus may group the si’s together in such a way to get a
factorization

sr−1 . . . s1 = asγb,

where bα = γ and a(−γ) = −α, i.e., aγ = α. It follows that asγa−1 = sα, and
therefore

sαasγb = asγsγb = ab,

which contradicts the minimality of r. $

This gives us half of theorem 2:

Proposition 8 The Weyl group W acts without isotropy on the set of bases and on
the set of Weyl chambers.

Proof: If a basis or a Weyl chamber is stabilized by an element w, the element
stabilizes the corresponding set of positive roots, and we conclude by proposition 7
above. $

The second half is considerably more easy:

Proposition 9 The Weyl group acts transitively on the set of Weyl chambers.

Proof: Recall that there is an invariant metric on both V and V ∗. Let K and L be
two Weyl chambers and pick elements f ∈ K and g ∈ L. Let w ∈ W be such that
‖wg − f‖ is minimal, indeed, we find such a w since the Weyl group W is finite2.
For any wall Hα of K, the elements wg and f must be on the same side of Hα, if
not ‖sαwg − f‖ < ‖wg − f‖. Hence wg ∈ K, and as different Weyl chambers are
disjoint, it follows that wL = K. $

Versjon: Wednesday, October 24, 2012 8:41:35 AM

2This holds since W embeds into the group of permutations of all the roots.
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