Notes 12: Dynkin diagrams.

Version 0.00 - with misprints,
The aim of this paragraph is to defined the so called Dynkin diagrams associated to a roots system. There are two slightly different type of diagrams in use, the other type which contains less information about the root system is called Coxeter diagrams.

Let a root system with roots $R \subseteq V$ in a vector space V of dimension k be given, and chose a basis S for the system. The angels between the roots in the basis are all obtuse, and as listed in table on page 13 in Notes 11, there are only a few possible value these angles can have, namely the four values $\pi / 2,2 \pi / 3,3 \pi / 4$ and $5 \pi / 6$. In case the roots are orthogonal, there is no restriction on the ratio between their lengths, but in the three other cases the corresponding ratios are $1, \sqrt{2}, \sqrt{3}$,

We now come to the definition of the Dynkin diagram. It is a graph with nodes and edges connecting some of the nodes, where a graph is understood in the wide sense in that several edges connecting the same pair of nodes is allowed ${ }^{1}$. There is to be one node for each element in the basis S, and the number of edges between two nodes depends on the angle the corresponding roots form. If the roots are orthogonal, the nodes are not connected. Two nodes with corresponding roots forming an angle of $\pi / 3$ are connected by one edge; they are connected by two edges if the angle is $3 / 4$ and by three if it is $5 \pi / 6$.

The diagrams obtained in this way are the Coxeter diagrams. In the Dynkin diagrams the different lengths of the roots are also taken into account. That is done by marking the edge connecting two nodes whose corresponding roots are of different length, with an arrowhead pointing to the smaller root. Examples are the two rank two root systems B_{2} and G_{2}, where the long roots in the basis are longer by a factor of respectively $\sqrt{2}$ and $\sqrt{3}$, and the Dynkin diagrams look like:

[^0]
B_{2}

The Dynkin diagram does of course not depend on the chosen basis S. We saw that any two bases are equivalent under Weyl group, and the Weyl group acts by orthogonal transformations. The angles and lengths used in constructing the Dynkin diagram are therefore the same for any two bases.

The Dynkin diagrams of the classical groups

The groups $\mathrm{U}(n)$ and $\mathrm{SU}(n)$. These groups are of rank n and $n-1$ respectively. Let T be a maximal torus of $\mathrm{U}(n)$ and let x_{1}, \ldots, x_{n} be the coordinates on $\operatorname{Lie} T$; that is a basis for Lie T^{*} such that T consists of the diagonal matrices with the exponentials $e^{2 \pi i x_{j}}$ as diagonal elements. The maximal torus of $\mathrm{SU}(n)$ is the kernel of the determinant det: $T \rightarrow \mathbb{S}^{1}$.

We saw that the two groups $\mathrm{U}(n)$ and $\mathrm{SU}(n)$ have the same roots, namely the linear functionals $\pm\left(x_{i}-x_{j}\right)$ for $1 \leq i<j \leq n$. In the case of $\operatorname{SU}(n)$ one easily convinces oneself that a basis for $\operatorname{Lie} T^{*}$ is formed by the $n-1$ roots $\alpha_{i}=x_{i}-x_{i+1}$ for $1 \leq i<n$. The unitary group $\mathrm{U}(n)$ has the same roots, but it is not semi-simple, the centre of $\mathrm{U}(n)$ being isomorphic to \mathbb{S}^{1}, hence the roots do not span Lie T^{*}.

Using an invariant inner product on Lie T^{*} scaled in a manner that the x_{i} 's are of norm one, we compute, assuming $i<j$:

$$
\left\langle\alpha_{i}, \alpha_{j}\right\rangle=\left\langle x_{i}-x_{i+1}, x_{j}-x_{j+1}\right\rangle=-\left\langle x_{i+1}, x_{j}\right\rangle=-\delta_{i+1, j}
$$

We conclude that α_{i} and α_{j} are orthogonal if $j \neq i+1$, and, the roots all being of the same length $\sqrt{2}$, that α_{i} and α_{i+1} form an angle of $2 \pi / 3$. The Dynkin diagram has $n-1$ nodes, is denoted by A_{n-1} and looks like

The orthogonal groups $\operatorname{SO}(2 m)$. The rank of $\mathrm{SO}(2 m)$ is m, and we use coordinates x_{1}, \ldots, x_{m} on $\operatorname{Lie} T^{*}$, corresponding to the angles appearing in the diagonal blocks of T.

We have shown that the roots of $\mathrm{SO}(2 m)$ are are $\pm x_{i} \pm x_{j}$ for $1 \leq i<j \leq n$. A basis is formed by $\alpha_{i}=x_{i}-x_{i+1}$ for $1 \leq i<m$ and $x_{m-1}+x_{m}$, as one easily convinces oneself of (with the help of one sum and all the differences, you can generate all the
sums). The roots $x_{i}-x_{i+1}$ behave just as in the previous case, and concerning the new one, we compute

$$
\left\langle x_{i}-x_{i+1}, x_{m-1}+x_{m}\right\rangle= \begin{cases}-1 & \text { if } i=m-2 \\ 0 & \text { if not },\end{cases}
$$

and $x_{m-1}+x_{m}$ is orthogonal two all the others except $x_{i}-x_{i+1}$ with which it forms the angle $2 \pi / 3$. The Dynkin diagram is denoted by D_{m}, and it is obtained by adding one new node to A_{m-1} and connecting it to node number $m-2$ by an edge:

The orthogonal groups $\operatorname{SO}(2 m+1)$. The group $\mathrm{SO}(2 m+1)$ has the same maximal torus as $\mathrm{SO}(2 m)$. It shares the roots of $\mathrm{SO}(2 m+1)$, but have gotten $2 m$ additional roots. The roots are $\pm x_{i} \pm x_{j}$ for $1 \leq i<j \leq m$, and the additional ones $\pm x_{i}$ for $1 \leq i \leq m$. A basis will be $x_{i}-x_{i+1}$ for $1 \leq i<m$ and x_{m}. The only new thing to compute is

$$
\left\langle x_{m-1}-x_{m}, x_{m}\right\rangle=-1,
$$

and the length of x_{m} which is one. It is thus a short root, the old ones having length $\sqrt{2}$ and being long. The angle between $x_{m-1}-x_{m}$ and x_{m} is $3 \pi / 4$. Hence the Dynkin diagram is

$$
B_{m}: \circ-0 \rightleftharpoons 0
$$

The symplecic groups $\operatorname{Sp}(2 m)$ This roots are $\pm x_{i} \pm x_{j}$ for $1 \leq i<j \leq m$ and $\pm 2 x_{i}$ for $1 \leq i \leq m$. A basis is $x_{i}-x_{i+1}$ for $1 \leq i<m$ and $2 x_{m}$ The only new thing to compute is

$$
\left\langle x_{m-1}-x_{m}, 2 x_{m}\right\rangle=-2,
$$

and the length of $2 x_{m}$ which is two. It is thus a long root, the old ones being short, and this is the only thing that distinguishes it from B_{m}. The angle between $x_{m-1}-x_{m}$ and x_{m} is $3 \pi / 4$. Hence the Dynkin diagram is

Reducible root systems

The Dynkin diagram need not being a connected graph, it might well have several connected components, say D_{1}, \ldots, D_{r}. Two roots from the basis having their nodes in different components are by definition not connected by an edge, hence they are orthogonal. As linear combinations of orthogonal roots are orthogonal, the set of roots R is a disjoint union of the orthogonal subsets R_{1}, \ldots, R_{r}, where the roots in R_{i} are combinations of basis elements with nodes in D_{i}. The system is not irreducible. It decomposes as an orthogonal sum $V_{1} \oplus V_{2} \oplus \cdots \oplus V_{r}$ with each V_{i} being the subspace spanned by R_{i}.

The Dynkin diagram determines the root system

Assume that two root systems $R_{1} \subseteq V_{1}$ and $R_{2} \subseteq V_{2}$ have diagrams D_{1} and D_{2} with an isomorphism of diagrams $\psi: D_{1} \rightarrow D_{2}$ between them, where we by an isomorphism of diagrams understand a bijection respecting edges and arrowheads. The nodes of the diagrams correspond to bases S_{1} and S_{2} in V_{1} and V_{2} respectively, so ψ gives a bijection between the two bases, hence a linear isomorphism $\Psi: V_{1} \rightarrow V_{2}$. The angles and lengths are preserved after a scaling, hence ψ induces an orthogonal transformation.

What about the two sets of roots? They are preserved by Ψ due to the transitive action of the Weyl groups on the roots: The map $a \rightarrow \Psi a \Psi^{-1}$ clearly induces an isomorphism between the orthogonal groups $\mathrm{O}\left(V_{1}\right)$ and $\mathrm{O}\left(V_{2}\right)$, and as the Weyl groups are generated by simple reflections, that map carries the Weyl group of R_{1} into the one of R_{2}. It follows that Ψ maps R_{1} into R_{2} since the Weyl groups act transitively on the roots.

Obviously the orthogonal map Ψ is uniquely defined by ψ, but there is a choice of the bases involved, which may be tackled in the following way: If Ψ is any orthogonal map $V_{1} \rightarrow V_{2}$ taking R_{1} into R_{2}, then the composition $w^{\prime} \circ \Psi \circ w^{-1}$, where w and w^{\prime} are elements from the Weyl groups of V_{1} and V_{2} respectively, is orthogonal and carries R_{1} into R_{2}. This makes the product of the Weyl groups act on the transformations Ψ.

Any two bases being equivalent under the action of the Weyl group, we get the following proposition:

Proposition 1 Given $R_{1} \subseteq V_{1}$ and $R_{2} \subseteq V_{2}$ with Dynkin diagrams D_{1} and D_{2}. Then there is a bijection between orbits under the product of the Weyl groups of orthogonal maps $V_{1} \rightarrow V_{2}$ carrying R_{1} into R_{2} and isomorphisms of diagrams $D_{1} \rightarrow D_{2}$.

Let $R \subseteq V$ be a root system. The Weyl group $W \subseteq \mathrm{O}(V)$ carries the set of roots R into R, and it is a natural question whether there other subgroups of $\mathrm{O}(V)$ doing the same? By the proposition the answer depends on the root system, it is sometimes yes and sometimes no. For a while, we let $G(R)=\{a \in \mathrm{O}(V) \mid a R \subseteq R\}$ and $\operatorname{Out}(R)=G(R) / W$.

In the case the of the root system A_{n}, we have $\operatorname{Out}\left(A_{n}\right)=\mathbb{Z} / 2 \mathbb{Z}$. Indeed the Dynkin diagram of A_{n} has a symmetry of order two: If n is even, one may reflect the diagram about the midpoint of the middle edge, and if n is odd, about the middle node. This is the only possible symmetry (the two extreme nodes must be swapped, and this determines the rest of the symmetry).

The two root systems B_{n} and C_{n} do not have any symmetries since the arrowhead makes the extreme nodes different. Hence they can not be permuted.

However D_{n} has symmetries. If $n>4$, then $\operatorname{Out}\left(D_{n}\right)=\mathbb{Z} / 2 \mathbb{Z}$: One may exchange the two nodes in the "fork", and that is the only symmetry since the "long tail" must be fixed. If $n=4$ the diagram has one central node connected to three satellites, which may be permuted at will. Hence $\operatorname{Out}\left(D_{4}\right)$ is the full symmetric group on three letters, i.e., Out $\left(D_{4}\right)=S_{3}$.

The Killing-Cartan Classification

In beginning of these notes, we described the Dynkin diagrams of the four series of classical groups, the series A_{n-1}, B_{m}, C_{m} and D_{m}. They are all irreducible, in addition there are five so called exceptional root systems: $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}. We have already met G_{2}, and the others are depicted below.

It is a theorem, called the Killing-Cartan classification, that these - that is the four classical series and the five exceptional systems - are all the irreducible root systems that exist. Each one of them is the root system corresponding to a Lie algebra, and there are compact connected groups having those Lie algebras.

The Root system determines the Lie algebra.
One may prove that if two Lie groups have the same root systems, then their Lie-algebras are isomophic. It is a rather subtle argument which we do not dive into here.

[^0]: ${ }^{1}$ This is a called a multigraph by some.

