
Notes 4: The exponential map.

Version 0.00 — with misprints,

Recap of vector fields.

Recall that a smooth vector field , or just a vector field for short, on G is a section
of the tangent bundle; in other words, it is a smooth map v : G → TG such that
vπ = idG. The map v picks out a tangent vector v(x) ∈ TxG for each x ∈ G, and it
does this in smooth way.

There are two ways of thinking about vector fields, depending on your tendencies.
Geometers would may be think about G as being a submanifold of some euclidian
space RN (of really huge dimension) and the tangent vectors would then be real, old
fashioned vectors being tangent to G. If you are more analytically in your thoughts
(or more bourbakistic perhaps) you would think about a vector field as a global
derivation: A map D : C∞(G) → C∞G, satisfying D(fg) = fD(g) + gD(f). This
last point of view is more in conformity with the now universal way of defining the
tangent vector to a manifold, as a point derivation.

The correspodence between the two views is of course the formula

Dv(f) = ∇f · v.

for the directional derivative Dv(f).
Locally, in a chart U with coordinates x1, . . . , xn a vector field is represented as

a linear combination
�

ai∂/∂xi where the ai-s are smooth functions on U . So for
example on the real numbers R, we have the global vector field Dt = d/dt, that is,
Dt is a global generator for the tangent bundle TR. Any other field may be written
as f(t)Dt where f ∈ C∞(R). To simplify the notation, we will some times dismiss
the variable t, and only write D.

If α : R → G is a smooth map, we denote by α� the vector field dα(D) and α�(t)
will be shorthand for dtα(D)(α(t)) 1. Strictly speaking, this is not a vector field on
G, it is only defined for points in the image α(R). In terms of commutative diagrams

1The shorthand notation is really indicated here. It is a good training for your ability to dechiffer
formalities to convince yourself that the formula dtα(D)(α(t)) means what it is supposed to mean.
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it fits into the following one:

TR α ��

��

TG

��

R

D

��

��

α�

���������������
G

For those not accustomed to the compact notaion of global differential geometry,
let us use a few words to see what the expression dtα(D)(α(t)) means in local
coordinates, so let U be a chart in G with coordinates x1, . . . , xn as above.

Recall that if f is a function defined in U , then dtα(D) is the derivation sending
f to D(f ◦ α) = df(α(t))/dt. If αi = xi ◦ α denote the components of α, the chain
rule tells us that df(α(t))/dt =

�
i ∂f/∂xiα�i(t). This means that the field dtα(D)

is expressed as
�

i α
�
i(t)∂/∂xi in the local basis ∂/∂x1, . . . , ∂/∂xn for the tangent

bundle. If the tangent spaces are identified with Rn via that basis, we retrieve the
good old derivative α�(t) = (a�1(t), . . . , α

�
n(t)).

Integral curves

Let now v be a vector field on G. We say that a smooth map α : I → G, where I⊆R
is an open interval, is an integral curve for v if α�(t) = v(α(t)) for all t ∈ I. If xG
is a point, we may ask that the integral curve pass through x, and that this occure
as the parameter takes a given value t0 ∈ I. These conditions constitute the initial
value problem

α�(t) = v(α(t)) and α(t0) = x, (✧)

which should be satisfied for t ∈ I.
From analysis we know that given any smooth vector field v on a manifold X and

a point x ∈ X, then v has a unique maximal, integral curve to x passing through
x. Having an integral curve meaning that there is an interval I containing 0 and a
function α : I → X satisfying α�(t) = v(a(t)) and α(0) = x, and the curve being
maxial means that if I⊆ J is a strictly larger interval than I, then no such curve
exists.

It also holds true, that in the case the field v depends smoothly on some para-
meters, the integral curves α likewise depend smoothly on those parameters. If U
is the parameter space, there is a smooth map I × U → X say α(t, u), such that
α�(t, u) = V (α(t), u).
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Left invariant vector fields

A vector field v on the Lie group G is called left invariant if it for all x and y in g
satisfies the following:

v(xy) = dyλxv(y) (✸)

that is, if you move along G following a translation, the vector field is also translated.
One easily verifies that a linear combination of two left invariant vector fields is left
invariant, so that the left invariant vector fields constitute a real vector space.

Example — Gl(n, R). Putting y = e in the formula ✸, we see that

v(x) = deλxv(e) (❃)

so v is uniquely determined by its value at e. On the other hand, if v ∈ TeG is given,
❃ with v(e) = v defines a vector field on G, which is both left invariant and smooth.
To verify the left invariance, use that λxy = λxλy and the chain rule:

v(xy) = deλxyv(e) = deλx ◦ deλyv(e) = deλxv(y)

Smoothness follows from the diagram below where all maps are smooth,

G× TeG
idG×η

��

��

G× TG
ι ��

��

TG× TG
dµ

��

��

TG

��

G× {e} �� G×G �� G×G
µ

�� G

and where η is the inclusion of TeG in TG, and ι(g, v) = (0, v). The map (g, v) �→
deλgv is just the composition of the maps in the upper row, and as all maps in that
row are smooth, it is smooth, both as a function of g and v.

We have proven the following:
Proposition 1 The definition

Dv(x) = deλxv

sets up a one to one correspondenc between left invariant vector fields Dv on G and

tangent vectors v in TeG, and it depends on v in a smooth way.

Example — Gl(n, R). In this case the derivative dxλa is just multiplication by the
matrix a. So the invariant field Dv is no more mystrious than Dv(a) = av.
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One parameter groups

We let G be a Lie group and nose-dive directly into the definition:

Defenition 1 A one-parameter group in G is a Lie group homomorphism α : R →
G; that is a smooth map with α(s + t) = α(s)α(t) and α(0) = 1.

The set of one parameter groups in G will be denoted by Hom(R, G). It is
functorial in G; if α ∈ Hom(R, G) and φ : G → H is a Lie group homomorphism,
then clearly f ◦ α ∈ Hom(R, H). Thus there is a functor

Hom(R, ∗) : Liegrps → Sets.

Example — S1
. A one parameter group in S1 is a Lie group homorphism α : R →

S1. It lifts uniquely to a homorphism �α : R → R, i.e., α(t) = e2πieα(t). Any Lie group
homorphism R → R is given by its value at 1, hence if �α(1) = a, then α(t) = e2πiat.
Sending a to α gives a surjective map from R to Hom(R, S1), and the condition that
a and a� give the same one parameter group is that their difference be an integer.
We have seen:

Hom(R, S1) � S1.

The aim of this pharagraph is to prove that the one parameter groups in G are
precisely the integral curves passing through e of left invariant vector fields.

Lemma 1 If v is a left invariant vectorfield on G and α(t) is a integral curve for

v, then a(t + s) = a(s)a(t) whenever α(s), α(t) and α(s + t) all three are defined.

Proof: We let β be the curve β(t) = a(t + s) and γ(t) the curve γ(t) = α(s)α(t),
where s is fixed and t is the running parameter. We are going to show that both
these curves are integral curves for the vector field v, i.e., they satify the differential
equation

η�(t) = v(η(t)),

and, as obviuosly β(0) = γ(0) = α(s), it follows by the uniquness of the integral
curve through a point, that α(t + s) = α(s)α(t).

If for a moment λs is translation by s in R, them β = α ◦ λs, and since dtλs = 1
everyvhere ((t + s)� = 1), it follows from the cahin rule that β�(t) = α�(t + s) =
v(α(t + s)).

On the other hand, computing the derivative γ�(t) we get

γ�(t) = d0(λα(s)α(t)) = dα(t)λα(s)α
�(t) = dα(t)λα(s)v(α(t)) = v(α(s)α(t)) = v(γ(t)).

❏
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Lemma 2 If v is a left invariant vector field on G, then the integral curve α(t)
passing through e, is defined for all t ∈ R

Proof: Let I⊆R be a maximal interval over which α is defined. Let t ∈ I. Then
on t + I we may define α(t + s) = α(t)α(s), and by lemma 1 this agrees with the
original definition of α on the intersection I ∩ t+ I, Hence t+ I⊆ I for all t ∈ I such
that I ∩ t + I �= ∅. This clearly implies that I = R. ❏

The two lemmas put together prove:

Theorem 1 There is a one-to-one correspondence between one-parameter groups

R → G and left invariant vector fields on G given by associating to α the left

invariant vector field Dα�(0) with value α�(0) in TeG.

Let φ : G → H be a map of Lie groups and α : R → G a one parameter group. If
β = f ◦ α is the induced one parameter group in H, the chain rule gives

β�(0) = d0β(Dt) = d0(f ◦ α)(Dt) = def(d0Dt) = def(a�(0)).

Theorem 2 The correspondence Hom(R, G) � TeG above, given as α �→ α�(0),
is functorial. That is if φ : G → H is a Lie group map and β(t) = φ(α(t)), then

β�(0) = deφ(α�(0)).

The exponential map

Let G be a Lie group. If v ∈ TeG, then we have seen that there is a one parameter
group αv corresponding to the left invariant vector field Dv, that is the one with
Dv(g) = deλgv. We now perform a change of notation, and from now on we denote
the one parameter group associated to the left invaraint vector field Dv by exp tv.
This notation is clearly inspired by the traditional exponential function, but the
connection is of course much deeper than pure notational.

Example— Gl(n, R). In the case of Gl(n, R), the derivative of the translation
map λa is just multiplication by the matrix a, and this is the key to understanding
several of the statements about the exponential map in a setting of a general Lie
group and how they are related to the cooresponding statements in the setting of
matrix groups.
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Pick an a ∈ TI Gl(n, R) = Mn(R). The initial value problem ✧ defining exp ta
becomes:

α�(t) = dIλα(t)a = α(t) · a and α(0) = In,

and this initial value problem is solved by the good old power series

exp at =
∞�

n=0

antn

n!
.

The series is absolute and uniformely convergent, and in fact, has a meaning in any
Banach algebra 2 . One can compute the derivative term by term, which gives

(exp at)� =
∞�

n=1

antn−1

(n− 1)!
=

∞�

n=0

antn

n!
a = (exp at)a,

and naturally exp 0 = I. ❅

Example— Sl(n, R ). Consider the map exp Mn(R) → Gl(n, R) sending a matrix
a to exp a. Clearly

exp(�x) = In + �x + O(�2)

hence the derivative of exp at zero is the identity T0 Mn(R) = Mn(R) → Te Gl(n, R) =
Mn(R). We have seen that the derivative of the determinant is the trace; hence the de-
rivative of the map a �→ det exp a is equal to tr a, and it follows that det exp a = etr a,
hence the exponential carries so(n, R) into Sl(n, R ). ❅

Example— a2 = I. It might be instructive to compute one explicit example.
Assume that a is an n× n-matrix with a2 = In. Then

exp ta =
∞�

m=0

t2ma2m

(2m)!
+ a

∞�

m=1

t2m+1a2m

(2m + 1)!
= (cosh t)In + (sinh t)a,

so for example if

a =

�
0 1
1 0

�
,

then

exp a =

�
cosh t sinh t
sinh t cosh t

�
.

2 You need a multiplicative norm that is a norm that in addition to the triangle inequality
satisfies �x� y ≤ �x� �y�, and you need completeness to be sure an absolutely convergent series is
convergent.

— 6 —



Notes 4: The exponential map MAT4270 — Høst 2012

❅

The exponential map is a smooth one parameter group, that is a map

exp tv : R → G

depending smoothly on t. But it depends also smoothly on v. This follows from the
observation in proposition 1 that the left invariant vector field deλgv depends smootly
on v, and the result from analysis about initial value problems with parameters
saying that the solution depends smoothly on the parameters (if all input data do).

Hence we may recollect the functions exp tv for different v’s into one, smooth
function

E(t, v) = exp: R× TeG → G.

Defenition 2 Let G be a Lie group. The exponential map is the map exp: TeG → G
defined by exp v = E(1, v).

Proposition 2 The derivative of exp: TeG → G at the origin in TeG is the identity.

Hence exp is a local diffeomorphism near the origin.

Proof: We are to examine expressions like E(1, �v) − E(1, 0) = exp(�v) − e for �
small in a coordinate neighbourhood of e (where they have a meaning). By definition
of the derivative, we have

exp(�v) = e + �dt exp(�v) = e + �deλexp(�v)v,

hence exp(�v)− e/� = deλexp(�v)v and letting � tend to zero, we find deλev = v. ❏

As exp tv by definition is a one parameter group, it satisfying

Proposition 3

exp(s + t)v = exp sv · exp tv for all s, t ∈ R and

and

d0 exp tv = v.

These two propertie characterise exp tv.

Furthermore, the map exp tv is functorial in the following sense
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Proposition 4 If φ : G → H is a Lie group map, then

exp (tdeφ(v)) = φ(exp tv).

Proof: This follows immediatly from the corresponding property of one parameter
groups, theorem 2. ❏

Putting t = 1, we get

Proposition 5 The exponential map is functorial, that is, if φ : G → H is a Lie

group map, then

exp(dφev) = φ exp(v),

For diagrammatics the statement about the functoriality may be expressed by the
following commutative diagram:

TeG
exp

��

deφ
��

G

φ

��

TeH
exp

�� H.

When applied to different homomorphisms, this functoriality gives several impor-
tant formula. We shall give to examples. In the first one, the homorphism is the the
adjoint representation Ad∗ : G → Aut(TeG), whose derivative is ad∗ : Hom(TeG, TeG) →
Aut(TeG). The functoriality of exp then gives the commutative diagram

TeG
exp

��

ad∗

��

G

Ad∗

��

Hom(TeG, TeG)
exp

�� Aut(TeG).

where we use that Tid Aut(TeG) = Hom(TeG, TeG). Or formulated as a formula:

Proposition 6 For any Lie group, it holds true that

Ad∗ ◦ exp = exp ◦ad∗.
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This formula deserves a few remarks. First of all, the bottom map is the classical
exponential function, as described in the example above, applied to the endomorp-
hisms adx of TeG, which we recall is given as adv · w = [v, w], so

exp(adv) =
∞�

n=1

an
v

n!

where adn
v is the n-fold composition adn

v = adv ◦ adv ◦ · · · ◦ adv, or if you want,
adn

vw = [v, [v, [v, . . . , [v, w], . . . ] ] ] where there are n nested brackets. So for example,
if [v, w] = 0, then adn

v · w = 0 for n > 0, and hence exp(adv · w) = w.
The homorphism in our second example, the homorphism is the conjugation map

cx : G → G, whose derivative at unity is the adjoint representation Adx evaluated
at x. Hence the commutative diagram

TeG
exp

��

Adv

��

G

cx

��

TeG
exp

�� G.

Or as a formula

Proposition 7 For any Lie group G and any elements x ∈ G and v ∈ TeG

x exp v = exp Adxv.

As an application of these two formulas we show the following:

Proposition 8 Let G be a Lie group and let v and w be two tangent vectors at

unity. If [v, w] = 0, then exp v and exp w commute. Furthermore exp(v + w) =
exp(v) exp(w).

Proof: By proposition 7 we have

x · exp w · x−1 = exp Adx · w,

where x = exp v. Now by proposition 6

Adexp v · w = exp adv · w = w
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where the last equality holds because [v, w] = 0 as explained in the remark after
proposition 6, hence combining the two equations, we see that

exp v · exp w · exp v−1 = exp w,

so exp v and exp w commute. To prove the last part of the statement, regard the
function α(t) = exp tv · exp tw. This is a one parameter group, since

α(s + t) = exp(s + t)v · exp(s + t)w

= exp sv · exp tv · exp sw · exp tw

= exp sv · exp sw · exp tv · exp tw = α(s)α(t)

where we have used that exp tv and exp sw commute since [tv, sw] = 0. Now, what
is the derivative in 0 of this one parameter subgroup? To answere that, we use a
version of the product rule, as in lemma 3 below:

d0 exp tv · exp tw = d0 exp tv + d0 exp tw = v + w,

Hence α(t) is the one parameter group whose derivative at 0 equals v + w, that
is exp t(v + w), and we are done. ❏

An obvious corollary is

Corollary 1 Let G be an abelian Lie group. Then the exponential map is a group

homomorphism.

Proof: By corollary 1 Lie G is abelian, and the statement follows from proposition
8. ❏

Lemma 3 Let α and β be smooth maps from R to G with α(0) = β(0) = e. If

γ(t) = α(t) · β(t) then

d0γ = d0α + d0β.

Proof: This follows directly by the chain rule and the fact that d(e,e)µ(v, w) = v+w,
where µ is the multiplication map. Indeed, γ(t) = µ(α(t), β(t)), and thus γ = µ ◦ η
if we let η(t) = (α(t), β(t)).

Then d0γ is the composition

T0R
d0η

�� TeG⊕ TeG
d(e,e)µ

�� TeG.
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Hence d0η = d0α + d0β. ❏

Example— The exponential map for Sl(2, R ) is not surjective. The
point of this example is to show that the exponential map is not necessarily a
surjective map. This is e.g., the case for the group Sl(2, R ), as we shall see here; in
fact, the elements in Sl(2, R ) with two negative egienvalues are not in the image.

The matrices x ∈ sl(2, R) satisfy by definition tr x = 0, and therefore by Cayley-
Hamilton theorem we have x2 = − det xI. We shall discuss all the three possibilities
for det x; it can be positive, negative or zero:
i) If det x = 0, it follows that x2 = 0. Hence x is conjugate to a matrix on the form

�
0 t
0 0

�
,

and exp x is conjugate to �
1 et

0 1

�
.

Thus exp x is unipotent with 1 as the only eigenvalue.
ii) Assume det x < 0. Then x has two distinct eigenvalues λ and −λ with −λ2 < 0,
That is, the eigenvalue λ is a positive, real number. The exponential exp x therefore
has the eigenvalues e−λ and eλ, which both are positive and real.
iii) Assume finally that det x > 0. Then the eigenvalues λ and −λ satisfy −λ2 > 0,
which means that λ is purely imaginary, i.e., λ = it for some t ∈ R. Hence the
eigenvalues of exp x are eit and e−it.

Not in any of these cases the elements from Sl(2, R ) with negative, real eigenva-
lues appear as exp x, so they are not in the image of the exponential map. ❅

Classification of commutative Lie groups

As the title says the aim of this section id to give the complete list of connected,
abelian Lie groups. We know some examples, like the one dimensional ones R and
S1, and of course we can take direct product of copies of those, and in fact, that is
all there is:

Theorem 3 If G is a connected, abelian Lie group, then there are uniquely defined

non-negative integers n and m, such that

G � Rm × Sn.
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Proof: The proof leans on a two salient facts. The first, and also the most fun-
damental part, is that the exponential map is a Lie group homorphism when G is
abelian. Therefore there is an exact sequence of Lie groups

1 �� Γ �� TeG
exp

�� G �� 1,

where exp is surjective — which might have been mentioned as the third salient
fact — since it is a subgroup containing the open neigbourhood of e where exp is a
diffeomorphism, and that neigbourhood generates the whole of G.

We know that the kernel Γ is a discrete subgroup. The second fact we lean on, is
that the structure of discrete subgroups of a real vector space T is completely known
(and sufficiently simple). There are, as we shall prove in lemma 4 below, elements
γ1, . . . , γp which are linearly independent as vectors, that generate Γ. Letting T � be
the subspace of T generated by the γi’s — for which then γ1, . . . , γp is a basis —
and letting T �� be a complementary subspace, we see that

G � T �/Γ× T �� � Rγ1/Zγ1 × Rγ2/Zγ2 × . . .× Rγp/Zγp × T ��

and each of the quotients Rγi/Zγi is a circle S1. ❏

Lemma 4 Let T be a finite diemsional real vector space, and let Γ⊆T be a discrete

subgroup of T . Then there are elements γ1, . . . , γp in γ, linearly independent as

vectors, that generate Γ.

Proof: Recall that Γ is discrete of T if any point γ possesses an open neigbourhood
Uγ in T with Γ ∩ Uγ = {γ}. By a translation argument, this is equivalent to this
being the case for one point, say 0. Another usefull characterisation is that if {ηi}
is a sequence of elements in Γ that converges, then it is eventually constant, i.e.,

ηi = ηi+1 for i >> 0.
The proof will be by induction on the dimension. We first treat the case that V

is one dimensional, that is V = R. We let γ ∈ Γ be the smallest positive element,
which exists since any descending sequence of positive element from Γ must converge,
and therefore is eventually constant. Let b ∈ Γ be another positive element. Then
b/γ > 1 and the integer value [b/γ] satisfies [b/γ] ≥ 1, hence 0 ≤ b− nγ < γ, and γ
being the smallest positive element in γ, it follows that b = nγ.

Assume dim T > 1 and pick γ ∈ Γ. By the dimension one case, Γ ∩ Rγ has a
generator, which we after a change of names, can assume is γ. Let T � be the quotient
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T/Rγ and let π be the projection. We claim that πΓ is a discrete subgroup of T/Rγ.
Assume there is sequence π(ηi) in Γ/Zγ that converges to zero.

If we could choose {ηi} to be a bounded sequence, we would be in safety, since
then {ηi} has convergent subsequence which is eventually constant, Γ being discret,
and therefore π(ηi) is eventually constant.

The problem is that ηi might escape to infinity, but, luckily, we are alowed to
change each ηi by a multiple nγ without πηi changing, and thus are able to replace
the sequence {ηi} by one which is bounded.

To this end, write each ηi as ηi = xi + yi where xi ∈ Rγ and yi is orthogonal
to Rγ. We may find integers ni such that �xi − niγ� < �γ�, then by replacing {ηi}
with {ηi − niγ}, we may assume that �xi� < �γ� for all i.

Now if U is any open, bounded set with U ∩Rγ containing the “intervall” { tγ |
t ∈ [−1, 1] }, then πU is open and hence contains all but finitely many members
from the sequence {π(ηi)}. Consequently the bounded set U contains all but finitely
many of the ηi, and we are through.

So by induction Γ/Zγ⊆T/Rγ has a generator set γ1, . . . , γp−1 of linearly indepen-
dent vectors, and any lifting of these will together with γ form a linearly independent
generator set for Γ. ❏

Recall that a Lie group isomorphic to a product Sn = S1 × S1 × . . . × S1 of
circles is called a torus. Tori play a fundamental role in the representation theory of
compact groups. One reason is the following:

Corollary 2 Any compact, connected group G is a torus.

Proposition 9 Any compact, abelian lie group is isomorphic to a product T × A
where T is a torus and A is a finite group.

Proof: Let A = π0G. Then there is an exact sequence

0 �� G0
�� G �� A �� 0.

The identity component G0 is abelian, compact and connected, hence isomorphic to
a torus after the theorem. The quotient A = G/G0 is discrete and compact, hence
finite. We claim that the sequence splits, that is, there is a subgroup A�⊆G projecting
isomorphically onto A. As G is abelian, the action of A� on G0 by conjugation is
trivial, and G is the direct product G0 × A�.

To get hold of A�, the main feature is the following: Let a ∈ A be a generator
for one of the cyclic components of A of order e say . Lift a to some x in G. Then
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xe ∈ G0, and since G0 is divisible, xe = ye with y ∈ G0, but then (xy−1)e = 1 (G
being abelien) and xy−1 maps to a.

Now write A =
�p

i=1 Z/eiZ, and repeat the procedure we just described, for the
generators of each of the factors Z/eiZ. Their lifts generate the group A�. ❏
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