
Notes 8: symmetric groups.

Version 0.00 — with misprints,

This note is about the symmetic groups Sn of permutations of the set of the first
n natural numbers {1, . . . , n}, which we by the way shall denote by [1, n] in this
section. The representation theory of the symmetric groups is a vast subject , and
our modest aim is just to give a short introduction covering a few of the very basic
things.

Basics Recall that any permutation σ can be written as a composition of disjoint
cycles

σ = c1c2, . . . , cr.

The cycles ci are uniquely determined by σ, but as disjoint cycles commute, their
order is arbitrary. The sequence of the lengths of the cycles ci that appear in the cycle
decomposition of σ, say λ1, . . . , λr, is called the cycle type of σ. We shall order the
sequence decreasingly, that is λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1, and with that convension the
sequence is uniquely defined. For example the permutation (1, 2)(3, 4)(5, 6, 7)(9)(10)
has cycle type 3, 2, 2, 1, 1.

The formula that follows, which is easily verified (just follow what what it does
to ti), is sometimes usefull. We let τ be a permutation such that τ(i) = ti. Then

τ(1, 2, 3, . . . , r)τ−1 = (t1 . . . , tr)

The formula shows that any two cycles of the same length are conjugate, and
therefore so are two permutations with the same cycle type. Consequently the conju-
gacy classes of Sn are in one-one correspondence with the set of cycle types. A cycle
type is a decreasing sequence λ1, λ2, . . . , λr of natural numbers whose sum equals
n (remeber that the cycles of length one also are included). This is what we call a
partion of n.

The upshot of all this, is that the irreducible representations of Sn, being in a
one-one correspondence with the conjugacy classes, are in a one-one correspondance
with the partitions of n. It is very natural to ask for an explicit way of constructing
an irreducible representation from a partition. There are several ways of doing this,
and the one we shall follow is the old trail due to Alfred Young and Herman Weyl.
In due course we shall give a formula for an idempotent cλ ∈ C[Sn] depending on
the partition λ, such that Vλ = C[Sn]cλ is irreducible. The idempotent cλ is called a
Young symmetriser.
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Figur 1: To the left the diagram of the partition 4, 3, 2, 1, 1. To the right a filling.

The diagram of a partition. To any partion λ : λ1 ≥ λ2 ≥ · · · ≥ λr, one
associates the diagram D(λ) of λ. It is the subset of of R2 given by

D(λ) = { (i, λi) | 1 ≤ i ≤ r }.

We usually draw it in a plane with the axes oriented as in a matrix, i.e., the first
coordinate increases down along the traditional y-axis, and the second increases to
the rigth, along the traditional x-axis. The boxes of the diagram are the squares
of unit sides filling out the area between the two axes and D(λ), that is the unit
squares having their lower right corner located at a diagram point.

The figure shows the diagram of the partion 4, 3, 2, 1, 1 of 11. The points of D(λ)
are drawn as red dots.

Young Tablaeux The next step is to fill in the numbers between 1 and n in the
boxes of the diagram, placing one number in each box. This is called a filling of
the diagram, and the diagram with the numbers is often called a Young tableau

or a tablaeu fro short. Formally, a filling is bijective map T : D(λ) → [1, n], which
pictorially means that we place the number T (i, j) in the box with lower right corner
(i, j). The permutation group Sn acts on the fillings by permuting the numbers,
formslly τT = τ ◦ T .

The row group and the column group We are especially interested in two
subgroups of Sn. The first one is the row group P of the filling. It consists of all
permutations that respect the rows, i.e., those that only permutes the numbers
within each row. The other group is the column group Q. The members are the
permutations respecting all the columns. Clearly P ∩Q = {e}.

For example the filling in the figure has a row group whose elements must fix
2 and 6, they can swap the numbers 5 and 1 and can permute 3, 4, 7 as well as
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Figur 2: The diagrams of two partitions λ and µ with λ > µ. Two numbers in same
row and same column in blue.

8, 9, 10, 11. The two groups P and Q depend on the filling. However if we change
the filling by a permutation τ , the row group and the column group of T � = τT will
be the conjugates τPτ−1 and τQτ−1 respectively. To see this, the relation between
T and T � may be depicted with the commutative diagram:

D(λ)

T
��

T �

��
��������

[1, n] τ �� [1, n]

and it should be clear that the numbers in the i-th row of T � = τT is just the
numbers one gets by applying τ to the numbers in the i-th row of T fro which it
follows that P � and P are conjugate.

The lexicographical order The partions are partially ordere by the lexicograp-

hical order. Given two partitions λ and µ, then λ ≥ µ if λk > µk where k is the first
index where they differ. This is total order, fullfilling the usual axioms for a partial
order, and given two different partitions, one of them is coming first. For example
4, 3, 1 is ranked before 4, 2, 2.

Assume that λ > µ and let T be a filling of λ and U one of µ. Then there
are at least two numbers occuring in the same row of T and in the same column
of U . Indeed, the number n being the last number in the first row of λ differing
from the corresponding row of µ, must appear in one of the later rows of U . The
corresponding column has a number m in the row where n occured in T . And then
n and m are our numbers.
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The Young symmetrisers. Now we fix a partition λ and chose a filing T of λ.
The corresponding row group and column group are denoted by P and Q respectively.
We define two elements in the group algebra C[Sn]:

aλ =
�

p∈P

p

bλ =
�

p∈Q

sign(q) q.

And the most important gay, the Young symmetriser is the just their product

cλ = aλbλ.

Strictly speaking, this not a proper idempotent, there is a scalar involved, which
however is easy to compensate for. We shall prove:
Theorem 1 The symmetriser cλ satisfies

c2
λ = nλcλ

where nλ is an integer different from zero. Hence n−1
λ cλ is an idempotent.

When we gave the definition of the Young symmetriser we made a choice of the
filling T of the diagram. This dependence is however not to serious. Another filling T �

gives another Young symmetriser b�λ, but the two are conjugate by the permutation
τ such that τT = T �, that is τbλτ−1 = b�λ. This follows easily since the two row
groups and the two column groups are conjugate.

The classification of the irreducibles. Then Vλ = C[Sn]cλ is an Sn module
from the left. The points of the whole construction is the following theorem that we
eventually shall prove:

Theorem 2 The module Vλ is an complex, irreducible Sn-moduler. If λ �= µ, then

the two modules Vλ and Vµ are not isomorphic.

To make the notation simpler, for a while we’ll drop the references to it by
subscripts .

Lemma 1 For any p ∈ P and q ∈ Q the following relations hold:

ap = pa = a

bq = qb = sign(q) b

pcq = sign(q) c

The last one characterises c up to a scalar multiple.
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Proof: The two first ones are more or less obvious: A now standard argument
gives pa =

�
x∈P px = a since px runs through the row group P when x does.

Similarily, we have qb =
�

x∈Q q sign(x) x = sign(q)
�

q∈Q sign(qx) qx = sign(q) b
since, again, qx runs through Q when q does. The third equality, the one for c,
follows immediatly from the two first. The only demanding thing to prove is that
the last condition characterises c.

Assume to that end that x ∈ C[Sn] is an element satisfying pxq = sign(q) x for
all p ∈ P and q ∈ Q and let x =

�
y∈Sn

αyy. Substituting the expression for x in
the equality pxq = sign(q) x , we get the following

p−1xq−1 =
�

y∈Sn

αyp
−1yq−1 =

�

z

αpzqz =
�

y

sign(q) αyy = sign(q) x.

Equating coefficients we see that αz = αpzq for all z. In particular αpq = αe, so if we
can show that αz = 0 for all permutations z that are not in PQ we are safe.

Now we claim:

If g is a permutation not in PQ we may find to numbers n1 and n2 being in the

same row in T and in the same column of T � = g−1T .

Once this is established the proof is complete, indeed if τ is the transposition
swapping n1 and n2, then t ∈ P and t ∈ Q�, but Q� = gQg−1, so s = g−1tg ∈ Q.
Then tgs = tgg−1tg = g, and αg = αtgs = sign(s) αg = −αg since s is a transposition.
Hence αg = 0 as we wanted.

We attack the claim by induction on the number n. We shall see that if two
elements in a same row in T � = g−1T never are in the same column in T , then
g ∈ PQ. Assuming this, no two elements in the first row of T � are in the same
column of T , hence permuting within the columns of T , that is applying an element
q ∈ Q, we can make the first rows of T � and qT identical. Then the rest of the two
fillings are fillings of a smaller diagram, and since we changed T by an element in
Q, the smaller fillings fullfill the hypothesis. By induction qg−1 ∈ PQ, and hence
g ∈ PQ. ❏

The following gives a proof of the first part of the theorem:

Corollary 1 For any element x ∈ S, the product cxc is scalar multiple of c.

Proof: This is a direct consequence of the lemma. Indeed, pcxcq = pabxabq =
abxab = cxc, and by the third statement, the element cxc is a multiple of c. ❏
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Theorem 3 Vλ is irreducible.

Proof: Let V = Vλ and S = C[Sn]. Assume that W⊆V is a nontrivial invariant
subspace. Since C[Sn] is completely reducible, W is a direct summand of S. Stated
differently, this means that there is an idempotent e such that W = Se.

Now Wc⊆V c⊆Cc by the corollary 1.
There are two possibilities. Either cW = C c or cW = 0.
In the latter case, W · W⊆V W = AcW = 0. But e ∈ W , so it follows that

e = e2 = 0 and therefore W = 0. Hence the first possibility cW = Cc occurs since
W was supposed to be non-trivial. Then, however, c = cae for some a ∈ A, and
V = Ac = Acae⊆Ae = W , and we are done. ❏

Lemma 2 Assume that λ > µ in the lexicographical oreder. Then aλxbµ = 0 for

any x ∈ S. I particular cλcµ = 0.

Proof: By linearity we may assume that x is in S, i.e., x = τ ∈ S. Let T be the
filling of diagram of λ used to construct aλ and U the one of D(µ) used to construct
bµ.

We shall first show that aλbµ = 0, which is the salient point. If λ > µ, we may, as
in figure 3, find two numbers placed in the same row in the filling T and in the same
column in U . Then the transposition σ swapping those two numbers gives αλσ = αλ

and σbµ = −bµ, which together implies aλbµ = aλσσbµ = 0.
Now if we use U � = τU two construct a new b�µ, we get b�µ = τbµτ−1, and by what

we saw, 0 = aλb�µ = aλτbµτ−1. Hence aλτbµ = 0. ❏

Theorem 4 If λ and µ are two different partitions, then Vλ and V µ are not iso-

morphic

Proof: Now cλVλ = Ccλ �= 0 but cλVµ = 0 by lemma 2, so Vλ and Vµ are not
isomorphic. ❏

Tis finishes the proof of the main theorem in this section:

Theorem 5 There is a one to one correspondence between partitions λ of the natu-

ral number n and irreducible complex, representations of the symmetric group Sn.It

is given by associating to λ the module Vλ = C[Sn]cλ, where cλ is the Young sym-

metriser.
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Finally, two examples:

Example �. — The trivial representation. Take the stupid partion with
just the one element n. Then the row group is the whole symmetric group Sn, and
the column group is reduced to {1}. Then c =

�
p∈Sn

p, which is just the projection
on to the fixed part of Sn. That is, the corresponding representation is the trivial
one; indeed gc = g for all g ∈ Sn. ❅

Example �. — The alternation representation. The other extreme case
is the partition 1, 1, 1, . . . , 1 consisting of n ones. Then the row group is reduced to
the trivial group, and the column group is the whole symmetric group. The Young
symmetriser is c =

�
q∈Sn

sign(q) q, and the corresponding representation is the
alternating one: We have gc = sign(g) c for any g ∈ Sn. ❅

Figur 3: The diagrams of the partitions giving the trivial and the alternating repre-
sentation of S4.
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