MAT4270: ADVANCED QUESTIONS

MAKOTO YAMASHITA

These questions are about things slightly (or greatly) beyond what I can cover during the lecture, but I encourage you to think about them over the course. Some of these will be used as assignments for evaluation.

1. Group Cohomology of Finite Groups

Notation. G: finite group, K: field of characteristic 0 (can be \mathbb{C})

Why is $H^n(G; M)$ trivial for n > 0 if M is a representation of G over K?

- give a conceptual reasoning using $H^n(G; M) = \operatorname{Ext}_{K[G]}^n(K, M)$ and a categorical property of representations of G over K.
- give a concrete reasoning for $Z^n(G; M) = B^n(G; M)$ by "averaging" argument. Try n = 1, 2 first to get the hang of it, then general n if you have time.

References: [Bro94, Wei94]

2. Fixed point counting and positivity

Notation. G: finite group, X: finite G-set

For $g \in G$, let f(g) be the number of fixed points,

$$f(g) = |\{x \in X \mid gx = x\}|.$$

Show that f is positive definite: that is, if $(g_i)_{i\in I}$ is a family of elements of G and $(c_i)_{i\in I}$ is a family of complex numbers on the same index set, we have

$$\sum_{i,j\in I} c_i \bar{c}_j f(g_j^{-1}g_i) \ge 0.$$

Hint: express f(g) as the trace of some matrix, and use $\text{Tr}(A^*A) \geq 0$ if A^* is the conjugate transpose of A.

Also: f'(g) = |X| - f(g) is conditionally negative definite: if the coefficients $(c_i)_i$ satisfy $\sum_i c_i = 0$, then

$$\sum_{i,j\in I} c_i \bar{c}_j f'(g_j^{-1}g_i) \le 0.$$

This implies that $\exp(-f'(g))$ is positive definite.

Reference: [BO08]

3. Hopf algebras

Notation. G: finite group

What are the Hopf algebras associated with G, and how are they related?

- explain the Hopf algebra structure on the group algebra $\mathbb{C}[G]$.
- do the same for the function algebra $\mathcal{O}(G)$.

Date: v1: 2018.08.21.

- explain the duality between $\mathbb{C}[G]$ and $\mathcal{O}(G)$.
- formulate the notion of representation of G in terms of $\mathcal{O}(G)$.

Reference: [Car07]

4. Deformation problem

Notation. \mathfrak{g} : Lie algebra (say over \mathbb{R}) with bracket [x,y]

Suppose that we are given an infinitesimal deformation of \mathfrak{g} . Concretely, that means we are given another map $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, $(x,y) \mapsto [x,y]'$ such that $[x,y] + \epsilon[x,y]'$ defines a Lie algebra over $\mathbb{R}[\epsilon]/(\epsilon^2)$ when interpreted as the natural ϵ -linear extension on $\mathfrak{g}[\epsilon]/(\epsilon^2) = \{x_1 + \epsilon x_2 \mid x_1, x_2 \in \mathfrak{g}\}$. Here ϵ is an 'infinitesimal' such that $\epsilon^2 = 0$.

- what is the consistency condition between [x, y] and [x, y]'?
- describe the above relation in terms of Lie algebra cohomology; interpret [x, y]' as a cochain in the Chevalley–Eilenberg cochain complex of $\mathfrak g$ with coefficient $\mathfrak g$ itself. Which [x, y]' correspond to the coboundaries?
- present the Lie algebra of ax + b group as a deformation of the commutative Lie algebra \mathbb{R}^2 .
- what does Whitehead's lemma imply for semisimple Lie algebras?

References: [Kna88, Wei94]

5. Flag manifold

Notation. $\mathbb{P}^1(\mathbb{C})$: complex projective space $(\mathbb{C} \cup \{\infty\}, \text{ topologically } S^2)$

Explain geometric realization of the irreducible representations of SL₂.

- find a representation of $\mathfrak{sl}_2(\mathbb{C})$ as algebraic vector fields on $\mathbb{P}^1(\mathbb{C})$.
- what are the holomorphic line bundles on $\mathbb{P}^1(\mathbb{C})$ (usually denoted $\mathcal{O}(n)$ for $n \in \mathbb{Z}$), and what are the space of holomorphic sections $H^0(\mathbb{P}^1(\mathbb{C}), \mathcal{O}(n)) = \Gamma(\mathbb{P}^1(\mathbb{C}), \mathcal{O}(n))$?
- describe the first cohomology $H^1(\mathbb{P}^1(\mathbb{C}), \mathcal{O}(n))$, either through holomorphic differential forms in these coefficients, or through the Čech cohomology for the decomposition $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup_{\mathbb{C}^{\times}} \mathbb{C}$.
- identify these with the spaces of homogeneous polynomials in two variables, and compare the actions of \mathfrak{sl}_2 (or SL_2).
- interpret this construction as the Borel–Weil–Bott construction.

Reference: [Sep07]

6. Coadjoint action

Notation. \mathfrak{g} : Lie algebra, \mathfrak{g}^* : the linear dual of \mathfrak{g} , $\operatorname{Sym}(\mathfrak{g})$: the symmetric algebra

$$\operatorname{Sym}(\mathfrak{g}) = \left(\bigoplus_{n=0}^{\infty} \mathfrak{g}^{\otimes n}\right) / \langle x \otimes y - y \otimes x \mid x, y \in \mathfrak{g} \rangle.$$

What is the Kirillov bracket on \mathfrak{g}^* ?

- interpret the elements of the symmetric algebra $Sym(\mathfrak{g})$ as functions on \mathfrak{g}^* .
- extend the bracket [x, y] on \mathfrak{g} to a Poisson bracket on Sym(\mathfrak{g}).
- \bullet explain the relation between the universal enveloping algebras of $\mathfrak g$ with rescaled brackets the deformation quantization of this Poisson bracket.

7. Loop groups and affine Kac-Moody algebras

Notation. G: simple compact Lie group

What is a loop group LG, and what is its Lie algebra?

- how do you realize these objects in the following settings? (and what are the merits?)
 - rational smooth continuous
- what is the affine Lie algebra $\hat{\mathfrak{g}}$, and what is the affine Kac–Moody algebra $\tilde{\mathfrak{g}}$? (the terminology varies among different authors)
- describe its Cartan matrix and Dynkin diagram of $\tilde{\mathfrak{g}}$.

Reference: [Kac90]

8. Deformation quantization

Notation. $M: \mathbb{C}^{\infty}$ -manifold

Explain the Lie algebraic concepts in the problem of Poisson deformation quantization.

- what is a polyvector field on M? Explain the graded Lie algebra structure (Schouten-Nijenhuis bracket) on the space of polyvector fields $\Gamma(\bigwedge^* TM)$.
- what is a polydifferential operator on M? Explain the differential graded Lie algebra structure on the space of polydifferential operators $D^*(M)$.
- how are they related? What are the Maurer–Cartan elements in these differential graded Lie algebras?
- explain the Poisson deformation quantization problem in terms of the above objects.

9. Drinfeld-Kohno Lie Algebra

Notation. \mathfrak{t}_n : the *n*th Drinfeld-Kohno Lie algebra, G: simple compact Lie group

- describe the generators and relations of \mathfrak{t}_n .
- what is the relation between \mathfrak{t}_n and the pure braid group PB_n ?
- \bullet how are they related to the configuration space of n distinct complex numbers?
- when (π, V) is a representation of G, explain that there is an induced representation of \mathfrak{t}_n on $V^{\otimes n}$.

References

- [Bro94] K. S. Brown. (1994). Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, ISBN 0-387-90688-6. Corrected reprint of the 1982 original.
- [BO08] N. P. Brown and N. Ozawa. (2008). C*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, ISBN 978-0-8218-4381-9; 0-8218-4381-8.
- [Car07] P. Cartier, A primer of Hopf algebras, Frontiers in number theory, physics, and geometry. II, 2007, pp. 537–615, Springer, Berlin.
- [Kac90] V. G. Kac. (1990). Infinite-dimensional Lie algebras, Third, Cambridge University Press, Cambridge, DOI:10.1017/CB09780511626234, ISBN 0-521-37215-1; 0-521-46693-8.
- [Kna88] A. W. Knapp. (1988). Lie groups, Lie algebras, and cohomology, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, ISBN 0-691-08498-X.
- $[Sep07] \ M.\ R.\ Sepanski.\ (2007).\ Compact\ Lie\ groups,\ Graduate\ Texts\ in\ Mathematics,\ vol.\ 235,\ Springer,\ New\ York,\ DOI:10.1007/978-0-387-49158-5,\ ISBN\ 978-0-387-30263-8;\ 0-387-30263-8.$
- [Wei94] C. A. Weibel. (1994). An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, ISBN 0-521-43500-5; 0-521-55987-1.