- Introduction
 - underlying principle: linear algebra is easy
 - ▼ should try: nonlinear structure -> linear structure (matrices)
 - represent group elements by matrices
 - replace Lie groups (continuous group) by Lie algebras (infinitesimal model)
 - diagonalize matrices -> eigenvalues
 - character of representations
 - root system
 - concrete goals
 - linear representation of finite groups
 - complete reducibility
 - character of representation
 - # conjugacy classes = # irreducible representations
 - ▼ Lie algebras
 - solvable and semisimple Lie algebras
 - representation of SL2
 - ▼ root system of simple Lie algebras
 - classification by Dynkin diagrams
 - where does it lead to?
 - Tannaka-Krein duality
 - representation -> tensor categories
 - ▼ interplay between geometry of the flag manifold and representation
 - algebro-geometric and geometric structures
 - harmonic analysis
 - noncompact groups
 - functional analytic and algebraic structures
 - infinite dimensional Lie groups / algebras
 - loop groups, Kac-Moody algebras
 - vector fields, deformation quantization