MAT4270: EXERCISE SET 2

MAKOTO YAMASHITA

Problem 1. When X is a complex matrix, let \overline{X} denote the entry-wise complex conjugate of X. Show that

$$\mathfrak{su}_n = \{ X \in M_n(\mathbb{C}) \mid X^t = -X, \operatorname{Tr} X = 0 \}$$

is the Lie algebra of SU(n).

Hint: you want to relate the two defining conditions $\overline{U}^t U = I_n$ and $\det U = 1$ of SU(n) to the above conditions for X by the ansatz $U \sim I_n + \epsilon X$.

Problem 2. Give a concrete isomorphism between \mathfrak{su}_2 and \mathfrak{so}_3 .

Problem 3 (Exercise 8.40). The exponential map $\exp \mathfrak{g} \to G$ is:

- surjective for $G = \operatorname{GL}_n(\mathbb{C})$,
- not surjective for $G = \operatorname{GL}_n^+(\mathbb{R}) = \{A \in \operatorname{GL}_n^+(\mathbb{R}) \mid \det A > 0\}$, or $G = \operatorname{SL}_2(\mathbb{C})$.

Problem 4. For each $g \in G$, the adjoint map $\operatorname{Ad}_g: h \mapsto ghg^{-1}$ on G preserves e. Hence we get the induced linear transform $\mathfrak{g} \to \mathfrak{g}$ that we again denote by Ad_g . The transforms $(\operatorname{Ad}_g)_{g \in G}$ give a representation of G on \mathfrak{g} , hence we get a representation $(\operatorname{ad}_X)_{X \in \mathfrak{g}}$ of \mathfrak{g} on \mathfrak{g} . Thus, ad_X is defined by

$$\operatorname{ad}_X(Y) = \frac{d}{dt} \operatorname{Ad}_{\exp(tX)}(Y) \Big|_{t=0}$$

for $Y \in \mathfrak{g}$. Show that we have

$$\operatorname{ad}_X(Y) = [X, Y].$$

(Recall that the bracket [X, Y] was defined through the identification of \mathfrak{g} with the left invariant vector fields on G.)

Problem 5 (Exercise 9.7). If G is connected and nilpotent (\mathfrak{g} is nilpotent), then the exponential map exp: $\mathfrak{g} \to G$ is surjective.

Hint: by hypothesis, the Taylor power series for e^X and the Baker–Campbell–Hausdorff formula become finite sums.

Problem 6 (Section 10.1). Classify the real Lie algebras of dimension 2.

Date: v1: 02.10.2021.