1. Finite groups

Notation. G: finite group, X: finite G-set

Problem 1 (double transitivity). Suppose that G acts transitively on X. Let $C(X) = \langle \delta_x \mid x \in X \rangle$ be the space of complex functions on X, and consider the induced action $G \curvearrowright C(X)$. Moreover, let V be the invariant complement of the trivial subrepresentation $\mathbb{C}1_X \subset C(X)$. Explain that the the action of G on V is irreducible if and only if $G \curvearrowright X$ is doubly transitive in the sense that

$$\forall x \neq x', y \neq y' \exists g \colon gx = y, gx' = y'.$$

(That is, G acts transitively on $X \times X \setminus \{(x, x) \mid x \in X\}$.)

Reference. [Ser77, Section 2.3, Exercise 2.6]

Problem 2 (integrality of characters). Let R be the set of class functions on G which take values in algebraic integers. Explain the *integrality* of R and its application to an estimate of dimension of irreducible representations.

Reference. [Ser77, Section 6.5]

Problem 3 (fixed point counting and positivity). For $g \in G$, let f(g) be the number of fixed points,

$$f(g) = |\{x \in X \mid gx = x\}|$$

Show that f is positive definite: that is, if $(g_i)_{i \in I}$ is a family of elements of G and $(c_i)_{i \in I}$ is a family of complex numbers on the same index set, we have

$$\sum_{i,j\in I} c_i \bar{c}_j f(g_j^{-1}g_i) \ge 0.$$

Hint: express f(g) as the trace of some matrix, and use $\text{Tr}(A^*A) \ge 0$ if A^* is the conjugate transpose of A.

Also: f'(g) = |X| - f(g) is conditionally negative definite: if the coefficients $(c_i)_i$ satisfy $\sum_i c_i = 0$, then

$$\sum_{j \in I} c_i \bar{c}_j f'(g_j^{-1}g_i) \le 0$$

This implies that $\exp(-f'(g))$ is positive definite.

Reference. [BO08]

2. Lie Algebras

Notation. K: field of characteristic 0 (can be \mathbb{C}), \mathfrak{g} : finite dimensional Lie algebra over K with bracket [x, y]

Problem 4 (Levi's theorem). Explain that there is a semisimple subalgebra $\mathfrak{s} \subset \mathfrak{g}$ such that $\mathfrak{g} = \mathfrak{s} + \operatorname{Rad}(\mathfrak{g})$. Also, give an nontrivial example of this decomposition ($\mathfrak{s} \neq 0 \neq \operatorname{Rad}(\mathfrak{g})$).

Reference. [FH91, Section E.1]

Problem 5 (Ado's theorem). Show that there is an integer n > 0 and an injective Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}_n(K)$.

Bonus: this is still true for positive characteristic, and the proof is shorter.

Reference. [FH91, Section E.2] (characteristic 0), [Bou07, Section 1.7, Exercise] (positive characteristic)

Problem 6 (Casimir operator of \mathfrak{sl}_2). Consider the element

$$C = \frac{1}{8}H^2 + \frac{1}{4}H + \frac{1}{2}FE$$

in the universal enveloping algebra $\mathcal{U}(\mathfrak{sl}_2(K))$.

- Explain the reason that if (π, V) is a representation of $\mathfrak{sl}_2(K)$, the endomorphism $\pi(C) \in \operatorname{End}(V)$ is a scalar multiple of the identity map.
- Compute the corresponding scalar for the natural representation of $\mathfrak{sl}_2(K)$ on the space homogeneous polynomials of degree n in two variables, $\langle x^n, x^{n-1}y, \ldots, y^n \rangle$.
- Express C using the standard basis of \mathfrak{su}_2 .
- Use the identification $\mathfrak{su}_2 \simeq \mathfrak{so}_3$, express C as a differential operator on the unit sphere $S^2 \subset \mathbb{R}^3$.

Problem 7 (geometric realization of representations). Explain geometric realization of the irreducible representations of SL_2 on the complex projective space $\mathbb{P}^1(\mathbb{C})$.

- find a representation of $\mathfrak{sl}_2(\mathbb{C})$ as algebraic vector fields on $\mathbb{P}^1(\mathbb{C})$.
- what are the holomorphic line bundles on $\mathbb{P}^1(\mathbb{C})$ (usually denoted $\mathcal{O}(n)$ for $n \in \mathbb{Z}$), and what are the space of holomorphic sections $H^0(\mathbb{P}^1(\mathbb{C}), \mathcal{O}(n)) = \Gamma(\mathbb{P}^1(\mathbb{C}), \mathcal{O}(n))$?
- describe the first cohomology $H^1(\mathbb{P}^1(\mathbb{C}), \mathcal{O}(n))$, either through holomorphic differential forms in these coefficients, or through the Čech cohomology for the decomposition $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup_{\mathbb{C}^{\times}} \mathbb{C}$.
- identify these with the spaces of homogeneous polynomials in two variables, and compare the actions of \mathfrak{sl}_2 (or SL_2).
- interpret this construction as the Borel–Weil–Bott construction.

Reference. [Sep07]

References

- [Bou07] N. Bourbaki. (2007). Éléments de mathématique. Groupes et algèbres de Lie. chapitre 1, Springer, Berlin-Heidelberg, DOI:10.1007/978-3-540-35337-9. Reprint of the 1972 (Hermann) edition.
- [BO08] N. P. Brown and N. Ozawa. (2008). C*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, ISBN 978-0-8218-4381-9; 0-8218-4381-8.
- [FH91] W. Fulton and J. Harris. (1991). Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, DOI:10.1007/978-1-4612-0979-9, ISBN 0-387-97527-6; 0-387-97495-4. A first course, Readings in Mathematics.
- [Sep07] M. R. Sepanski. (2007). Compact Lie groups, Graduate Texts in Mathematics, vol. 235, Springer, New York, DOI:10.1007/978-0-387-49158-5, ISBN 978-0-387-30263-8; 0-387-30263-8.
- [Ser77] J.-P. Serre. (1977). Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, ISBN 0-387-90190-6. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42.