UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in:
MAT4301 - Partial Differential Equations
Day of examination: Thursday 28 November 2019
Examination hours: 09:00-13:00
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 15\%)

Consider the following first-order PDEs. For each PDE:

- If the problem has a solution,
- use the method of characteristics to solve it,
- verify that the formula that you have found is correct.
- If the problem does not have a solution, explain why.
- In either case, draw some of the characteristic curves.

1a

$$
\begin{cases}u_{x}-u_{y}=0 & \text { for } x, y \in(0,1) \tag{1}\\ u(0, y)=y & \text { for } y \in[0,1] \\ u(x, 1)=1-x^{2} & \text { for } x \in[0,1] .\end{cases}
$$

1b

$$
\begin{cases}t u_{t}+2 u_{x}=0 & \text { for } x \in \mathbb{R}, t>0 \tag{2}\\ u(x, 0)=\sin (x) & \text { for } x \in \mathbb{R}\end{cases}
$$

Problem 2 The wave equation (weight 10\%)

Let $T>0$. Find the general solution of the backwards problem

$$
\begin{cases}u_{t t}=u_{x x} & \text { for } x \in \mathbb{R}, t \in(0, T) \tag{3}\\ u(x, T)=g(x) & \text { for } x \in \mathbb{R} \\ u_{t}(x, T)=h(x) & \text { for } x \in \mathbb{R} .\end{cases}
$$

Is the solution unique?
(Continued on page 2.)

Problem 3 A conservation law (weight 5\%)

Find a weak solution of the problem

$$
\left\{\begin{array}{l}
u_{t}+f(u)_{x}=0 \tag{4}\\
u(x, 0)= \begin{cases}3 & \text { if } x<0 \\
1 & \text { if } x>0\end{cases}
\end{array}\right.
$$

where $f(u)=u^{4}$. Does your solution satisfy the entropy condition?

Problem 4 Duhamel's principle (weight 15\%)

4a
Verify that $u(x, t)=e^{-t} g(x-b t)$ solves the advection-reaction equation

$$
\begin{cases}u_{t}+b \cdot D u=-u & \text { for } x \in \mathbb{R}^{d}, t>0 \tag{5}\\ u(x, 0)=g(x) & \text { for } x \in \mathbb{R}^{d}\end{cases}
$$

where $b \in \mathbb{R}^{d}$ is a given vector and $g \in C^{1}\left(\mathbb{R}^{d}\right)$ is a given function.

4b

Use Duhamel's principle to find the solution of the corresponding nonhomogeneous equation

$$
\begin{cases}u_{t}+b \cdot D u=-u+f & \text { for } x \in \mathbb{R}^{d}, t>0 \tag{6}\\ u(x, 0)=g & \text { for } x \in \mathbb{R}^{d}\end{cases}
$$

for a function $f \in C\left(\mathbb{R}^{d} \times[0, \infty)\right)$. As in $\mathbf{4 a}$, verify that your answer is indeed a solution of (6).

Problem 5 Harmonic functions (weight 30\%)

Let $U \subset \mathbb{R}^{d}$ be open, bounded and connected, and let $u \in C^{\infty}\left(\mathbb{R}^{d}\right)$.
$5 a$
Show that if u is harmonic in U then $D^{\alpha} u$ is harmonic for any multi-index α.

5b

Conversely, show that if $u_{x_{i}}$ is harmonic in U for every $i=1, \ldots, n$, then u satisfies

$$
\Delta u=a \quad \text { in } U
$$

for some constant $a \in \mathbb{R}$.

5c
Assume u satisfies

$$
\begin{equation*}
-\Delta u=f \quad \text { in } U \tag{7}
\end{equation*}
$$

for a polynomial f of degree $k \in \mathbb{N}$. Prove the mean value formula

$$
\begin{equation*}
D^{\alpha} u(x)=f_{B(x, r)} D^{\alpha} u(y) d y \tag{8}
\end{equation*}
$$

for any multi-index $|\alpha|>k$. For what $x \in U$ and $r>0$ is the formula valid? (You may use the mean value formula for harmonic functions.)

$5 d$

Use $\mathbf{5 c}$ to prove the following maximum principle for any multi-index $|\alpha|>k$:

$$
\begin{equation*}
D^{\alpha} u(x) \leqslant \max _{\partial U} D^{\alpha} u \quad \forall x \in U \tag{9}
\end{equation*}
$$

Problem 6 (weight 25\%)

Let $U \subset \mathbb{R}^{n}$ be open, bounded and connected. Consider the advectiondiffusion problem

$$
\begin{cases}u_{t}+f(u)_{x}=\varepsilon u_{x x} & \text { for } x \in(0,1), t \in(0, T] \tag{10}\\ u(0, t)=u(1, t)=0 & \text { for } t \in(0, T] \\ u(x, 0)=g(x) & \text { for } x \in(0,1)\end{cases}
$$

where $f(u)=u^{3}, \varepsilon>0$ is a given number and $g \in C([0,1])$ satisfies $g(0)=g(1)=0$. Let $u \in C^{2}((0,1) \times(0, T]) \cap C([0,1] \times[0, T])$ be a solution of (10).

6a Energy method

Prove that $E[u](t):=\int_{0}^{1} u(x, t)^{2} d x$ decreases over time.

6b Maximum principle

Prove that $\min _{y \in[0,1]} g(y) \leqslant u(x, t) \leqslant \max _{y \in[0,1]} g(y)$ for every $x \in[0,1]$, $t \in[0, T]$.

Hint: Prove the result for $v^{\delta}(x, t)=u(x, t)-\delta t$ for some $\delta>0$ first. What equation does v^{δ} satisfy?

6c Uniqueness

Unlike for the heat equation, we cannot apply the results in $\mathbf{6 a}$ or $\mathbf{6 b}$ to prove uniqueness of the solution of (10). Why not?

THE END

