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Problem 1 (weight 15%)

Consider the following first-order PDEs. For each PDE:

• If the problem has a solution,

– use the method of characteristics to solve it,
– verify that the formula that you have found is correct.

• If the problem does not have a solution, explain why.

• In either case, draw some of the characteristic curves.

1a 
ux − uy = 0 for x, y ∈ (0, 1)

u(0, y) = y for y ∈ [0, 1]

u(x, 1) = 1− x2 for x ∈ [0, 1].

(1)

Solution: The equations of characteristics are

ẋ = 1, ẏ = −1, ż = 0,

with x(0) = x0, y(0) = y0, z(0) = z0 and (x0, y0) ∈ Γ = {(x, y) ∈
∂U : x = 0 or y = 1}, where U = (0, 1)2. (Since these equations are
independent of p = Du, we do not need the equation for ṗ.) The solution
is

x(s) = x0 + s, y(s) = y0 − s, z(s) = z0.

We have x0 = 0 if and only if y(s) 6 1−x(s) for all s, and y0 = 1 if and
only if y(s) > 1−x(s) for all s. Hence, for an arbitrary point (x, y) ∈ U
we have (x(s), y(s)) = (x, y) if and only if s = x, x0 = 0, y0 = x + y
when y 6 1− x, and y0 = 1, s = 1− y, x0 = x+ y − 1 when y > 1− x.

(Continued on page 2.)
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This leads to the solution

u(x, y) =

{
y0 = x+ y if y 6 1− x
1− (x0)2 = 1− (x+ y − 1)2 if y > 1− x.

(Note that the solution is continuous across y = 1− x.) We verify that
u solves the PDE:

ux(x, y)− uy(x, y) =

{
1− 1 = 0 if y 6 1− x
−2(x+ y − 1) + 2(x+ y − 1) = 0 if y > 1− x

and the boundary conditions:

u(0, y) = 0 + y = y, u(x, 1) = 1− (x+ 1− 1)2 = 1− x2.

A sketch of the characteristics and their direction (direction of increasing
s) is shown below.

1b {
tut + 2ux = 0 for x ∈ R, t > 0

u(x, 0) = sin(x) for x ∈ R
(2)

Solution: Write the problem as{
F (Du(X), u(X), X) = 0 in U
u = g on Γ

where U = R×R+, Γ = R×{0}, X =

(
x
t

)
and F (p, z,X) = p·

(
2
t

)
. We

have X0 ∈ Γ if and only if t0 = 0, and a point (p0, z0, X0) is admissible
if and only if

t0 = 0, z0 = g(X0) = ex
0
, p0

1 = gx(X0) = cos(x0), F (p0, z0, X0) = 0.

But F (p0, z0, X0) = 2p0
1 = 2 cos(x0), which is only zero for certain

(Continued on page 3.)
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choices of x0, namely x0 = π
2 + kπ for k ∈ Z.

The noncharacteristic condition at (p0, z0, X0) reads

0 6= ν(X0) ·DpF (p0, z0, X0) = −t0 = 0,

so the condition is never satisfied. Hence, the method of characteristics
is not applicable.

The equations for characteristics are

ṫ(s) = t(s), ẋ(s) = 2, ż(s) = 0

with t(0) = t0 = 0, x(0) = x0, z(0) = z0 = x0. We find that

x(s) = x0 + 2s, t(s) = t0es.

Hence, t0 = 0 would yield t(s) ≡ 0, and the characteristics never enter
the domain U .

Without applying the boundary condition t0 = 0 we get the relations

s = log (ct) ⇒ x(t) = x0 + 2 log(ct) for c =
1

t0
∈ R

which can be seen in the figure below.

Problem 2 The wave equation (weight 10%)

Let T > 0. Find the general solution of the backwards problem
utt = uxx for x ∈ R, t ∈ (0, T )

u(x, T ) = g(x) for x ∈ R
ut(x, T ) = h(x) for x ∈ R.

(3)

Is the solution unique?

Solution (approach 1): We define v = ut−ux and obtain the system
of transport equations

vt + vx = 0 for x ∈ R, t ∈ (0, T )

v(x, T ) = h(x)− g′(x) for x ∈ R
ut − ux = v for x ∈ R, t ∈ (0, T )

u(x, T ) = g(x) for x ∈ R.

(Continued on page 4.)
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The characteristic for v going through a point (x, t) is s 7→ (x+ s, t+ s)
and since v is constant along this curve we get for s = 0 and s = T − t

v(x, t) = v(x+ T − t, T ) = h(x+ T − t)− g′(x+ T − t).

Likewise, the characteristics for u are s 7→ (x − s, t + s), so integrating
the equation along the characteristic over s ∈ (0, T − t) gives

u(x, t) = u(x− T + t, T )−
∫ T−t

0
v(x− s, t+ s) ds

= g(x− T + t)−
∫ T−t

0
h(x− s+ T − t− s)− g′(x− s+ T − t− s) ds

= −1

2

∫ x+T−t

x−T+t
h(y) dy +

1

2
(g(x− T + t) + g(x+ T − t)) .

Since every step in the above calculation was necessary, the solution
must be unique.

Solution (approach 2): Let v(x, t) = u(x, T − t) for x ∈ R, t ∈ [0, T ].
Then 

vtt = vxx for x ∈ R, t ∈ (0, T )

v(x, 0) = g(x) for x ∈ R
vt(x, 0) = −h(x) for x ∈ R.

Hence, d’Alembert’s formula gives

v(x, t) = −1

2

∫ x+t

x−t
h(y) dy +

1

2
(g(x− t) + g(x+ t)) .

Since u(x, t) = v(x, T − t) we conclude that

u(x, t) = −1

2

∫ x+T−t

x−T+t
h(y) dy +

1

2
(g(x− T + t) + g(x+ T − t)) .

Since the solution v is unique, the solution u is automatically unique.

Problem 3 A conservation law (weight 5%)

Find a weak solution of the problem
ut + f(u)x = 0 for x ∈ R, t > 0

u(x, 0) =

{
3 if x < 0

1 if x > 0

(4)

where f(u) = u4. Does your solution satisfy the entropy condition?

Solution: We make the ansatz

u(x, t) =

{
3 for x < st

1 for x > st

(Continued on page 5.)
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for some s ∈ R. The Rankine–Hugoniot condition demands that u is a
classical solution on either side of the discontinuity (which it is, since
constants solve (4)), and that the jump condition is satisfied:

f(3)− f(1) = s(3− 1) ⇔ s =
34 − 14

2
= 40.

The flux function is convex, so the entropy condition reduces to the
condition that

f ′(uL) > s > f ′(uR) ⇔ 4 · 33 = 108 > 40 > 4 · 13 = 4,

which is clearly true. Hence, the function

u(x, t) =

{
3 for x < 40t

1 for x > 40t

is the entropy solution of (4).

Problem 4 Duhamel’s principle (weight 15%)

4a

Verify that u(x, t) = e−tg(x− bt) solves the advection-reaction equation{
ut + b ·Du = −u for x ∈ Rd, t > 0

u(x, 0) = g(x) for x ∈ Rd
(5)

where b ∈ Rd is a given vector and g ∈ C1(Rd) is a given function.

Solution: We have u(x, 0) = e0g(x− 0) = g(x), and

ut(x, t) = −e−tg(x− bt) + e−tDg(x− bt) · (−b) = −u(x, t)− b ·Du(x, t),

so u solves the PDE.

4b

Use Duhamel’s principle to find the solution of the corresponding
nonhomogeneous equation{

ut + b ·Du = −u+ f for x ∈ Rd, t > 0

u(x, 0) = g for x ∈ Rd
(6)

for a function f ∈ C(Rd×[0,∞)). As in 4a, verify that your answer is indeed
a solution of (6).

Solution: Let first v = v(x, t; s) for t > s be the solution of{
vt + b ·Dv = −v for x ∈ Rd, t > s

v(x, s) = f(x, s) for x ∈ Rd

(Continued on page 6.)
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which we, by 4a, can write as

v(x, t; s) = e−(t−s)f(x− b(t− s), s).

Now define

v(x, t) =

∫ t

0
v(x, t; s) ds =

∫ t

0
e−(t−s)f(x− b(t− s), s) ds.

Then

vt(x, t) = e−(t−s)f(x− b(t− s), s)
∣∣∣
s=t

+

∫ t

0
−e−(t−s)f(x− b(t− s), s) + e−(t−s)Df(x− b(t− s), s) · (−b) ds

= f(x, t)− v(x, t)− b ·
∫ t

0
e−(t−s)Df(x− b(t− s), s) ds

= f(x, t)− v(x, t)− b ·Dv(x, t),

so v satisfies the inhomogeneous PDE, and v(x, 0) = 0. To satisfy the
initial data in (6) we add the solution from 4a to get

u(x, t) = e−tg(x− bt) +

∫ t

0
e−(t−s)f(x− b(t− s), s) ds.

Then u(x, 0) = e0g(x − 0) + 0 = g(x), and since u is the sum
of the homogeneous and inhomogeneous equations, it solves the
inhomogeneous equation.

Problem 5 Harmonic functions (weight 30%)

Let U ⊂ Rd be open, bounded and connected, and let u ∈ C∞(Rd).

5a

Show that if u is harmonic in U then Dαu is harmonic for any multi-index
α.

Solution:
∆(Dαu)(x) = Dα(∆u)(x) = 0.

5b

Conversely, show that if uxi is harmonic in U for every i = 1, . . . , n, then u
satisfies

∆u = a in U

for some constant a ∈ R.

Solution: We have

0 = ∆(uxi)(x) = (∆u)xi (x) ∀ i = 1, . . . , n.

(Continued on page 7.)
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Hence, for every i, the function ∆u(x) is constant in the ith variable –
in other words, ∆u is constant.

5c

Assume u satisfies
−∆u = f in U (7)

for a polynomial f of degree k ∈ N. Prove the mean value formula

Dαu(x) = −
∫
B(x,r)

Dαu(y) dy (8)

for any multi-index |α| > k. For what x ∈ U and r > 0 is the formula valid?
(You may use the mean value formula for harmonic functions.)

Solution: If f is a kth order polynomial then Dαf(x) = 0 for every
|α| > k. Hence,

−∆(Dαu) = 0 in U

for any |α| > k, that is, Dαu is harmonic in U . Thus, the mean value
formula yields (8) for any x ∈ U and r > 0 such that B(x, r) ⊂ U .

5d

Use 5c to prove the following maximum principle for any multi-index |α| > k:

Dαu(x) 6 max
∂U

Dαu ∀ x ∈ U. (9)

Solution: LetM = maxU D
αu. Then either Dαu(x) < M for all x ∈ U

(which clearly implies (9)), or there is some x0 ∈ U whereDαu(x0) = M .
Assume the latter. For any x ∈ U and r > 0 with B(x, r) ⊂ U we have

Dαu(x) = −
∫
B(x,r)

Dαu(y) dy 6 −
∫
B(x,r)

M dy = M,

with equality if and only if Dαu(y) = M for all y ∈ B(x, r). Setting
x = x0 in the above computation yields equality between the left- and
right-hand sides, so Dαu must be constant in B(x, r). To show that
Dαu(x̄) = M at any other point x̄ ∈ U we select balls B(xi, ri) ⊂ U for
i = 0, . . . , N so that xi ∈ B(xi−1, ri−1) for every i = 1, . . . , N and such
that x̄ ∈ B(xN , rN ). (This is possible since U is connected.) Repeating
the above argument reveals that Dαu ≡M in each ball, and hence also
at x̄. We conclude that Dαu ≡M in U , and in particular, (9) holds.

Problem 6 (weight 25%)

Let U ⊂ Rn be open, bounded and connected. Consider the advection-
diffusion problem

ut + f(u)x = εuxx for x ∈ (0, 1), t ∈ (0, T ]

u(0, t) = u(1, t) = 0 for t ∈ (0, T ]

u(x, 0) = g(x) for x ∈ (0, 1)

(10)

(Continued on page 8.)
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where f(u) = u3, ε > 0 is a given number and g ∈ C([0, 1]) satisfies
g(0) = g(1) = 0. Let u ∈ C2((0, 1)× (0, T ]) ∩ C([0, 1]× [0, T ]) be a solution
of (10).

6a Energy method

Prove that E[u](t) :=
∫ 1

0 u(x, t)2 dx decreases over time.

Solution:

d

dt
E[u](t) =

∫ 1

0
2u(x, t)ut(x, t) dx = 2

∫ 1

0
εu(x, t)uxx(x, t)− u(x, t)f(u(x, t))x dx

(integration by parts and the chain rule)

= 2ε u(x, t)ux(x, t)
∣∣∣x=1

x=0︸ ︷︷ ︸
=0, by the BC

−2ε

∫ 1

0
ux(x, t)2 dx− 3

∫ 1

0
u(x, t)3u(x, t)x dx

= −2ε

∫ 1

0
ux(x, t)2 dx︸ ︷︷ ︸
60

−3

4

∫ 1

0

(
u(x, t)4

)
x
dx

(integration by parts)

6 −3

4
u(x, t)4

∣∣∣x=1

x=0︸ ︷︷ ︸
=0, by the BC

.

6b Maximum principle

Prove that miny∈[0,1] g(y) 6 u(x, t) 6 maxy∈[0,1] g(y) for every x ∈ [0, 1],
t ∈ [0, T ].

Hint: Prove the result for vδ(x, t) = u(x, t) − δt for some δ > 0 first.
What equation does vδ satisfy?

Solution: Let vδ(x, t) = u(x, t)− δt for some δ > 0. Then vδx = ux and

vδt = ut − δ = εuxx − f(u)x − δ = εvδxx − f(vδ + δt)x − δ,

so writing f(vδ + δt)x = f ′(vδ + δt)vδx gives

vδt + f ′(vδ + δt)vδx − vδxx < 0.

Assume that vδ attains a maximum at some point (x0, t0) ∈ (0, 1) ×
(0, T ]. Then

vδx(x0, t0) > 0, vδx(x0, t0) = 0, vδxx(x0, t0) 6 0,

so

0 > vδt (x
0, t0) + f ′(vδ(x0, t0) + δt0)vδx(x0, t0)− vδxx(x0, t0) > 0,

(Continued on page 9.)
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a contradiction. Hence, vδ attains its maximum somewhere along the
set

Γ = {(x, t) : t = 0 or x ∈ {0, 1}}.

Passing δ → 0 yields for any (x, t) ∈ [0, 1]× [0, T ]

u(x, t) = lim
δ→0

vδ(x, t) 6 lim
δ→0

max
Γ

vδ = max
Γ

u

(since u = 0 at x = 0 and x = 1)

= max
(

max
y∈[0,1]

g(y), 0
)

(since g(0) = 0)

= max
y∈[0,1]

g(y).

A similar procedure would yield the lower bound.

6c Uniqueness

Unlike for the heat equation, we cannot apply the results in 6a or 6b to
prove uniqueness of the solution of (10). Why not?

Solution: The equation is nonlinear, so if u, v are two solutions then
w = u − v is not necessarily a solution. This means that the standard
approach to proving uniqueness via a priori bounds such as the energy
bound or maximum principle will not work.

THE END


