UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in:
MAT4301 - Partial Differential Equations
Day of examination: Thursday 28 November 2019
Examination hours: 09:00-13:00
This problem set consists of 9 pages.

Appendices:
Permitted aids:

None
None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 15\%)

Consider the following first-order PDEs. For each PDE:

- If the problem has a solution,
- use the method of characteristics to solve it,
- verify that the formula that you have found is correct.
- If the problem does not have a solution, explain why.
- In either case, draw some of the characteristic curves.

1a

$$
\begin{cases}u_{x}-u_{y}=0 & \text { for } x, y \in(0,1) \tag{1}\\ u(0, y)=y & \text { for } y \in[0,1] \\ u(x, 1)=1-x^{2} & \text { for } x \in[0,1]\end{cases}
$$

Solution: The equations of characteristics are

$$
\dot{x}=1, \quad \dot{y}=-1, \quad \dot{z}=0
$$

with $x(0)=x^{0}, y(0)=y^{0}, z(0)=z^{0}$ and $\left(x^{0}, y^{0}\right) \in \Gamma=\{(x, y) \in$ $\partial U: x=0$ or $y=1\}$, where $U=(0,1)^{2}$. (Since these equations are independent of $p=D u$, we do not need the equation for \dot{p}.) The solution is

$$
x(s)=x^{0}+s, \quad y(s)=y^{0}-s, \quad z(s)=z^{0}
$$

We have $x^{0}=0$ if and only if $y(s) \leqslant 1-x(s)$ for all s, and $y^{0}=1$ if and only if $y(s) \geqslant 1-x(s)$ for all s. Hence, for an arbitrary point $(x, y) \in U$ we have $(x(s), y(s))=(x, y)$ if and only if $s=x, x^{0}=0, y^{0}=x+y$ when $y \leqslant 1-x$, and $y^{0}=1, s=1-y, x^{0}=x+y-1$ when $y \geqslant 1-x$.

This leads to the solution

$$
u(x, y)= \begin{cases}y^{0}=x+y & \text { if } y \leqslant 1-x \\ 1-\left(x^{0}\right)^{2}=1-(x+y-1)^{2} & \text { if } y \geqslant 1-x\end{cases}
$$

(Note that the solution is continuous across $y=1-x$.) We verify that u solves the PDE:

$$
u_{x}(x, y)-u_{y}(x, y)= \begin{cases}1-1=0 & \text { if } y \leqslant 1-x \\ -2(x+y-1)+2(x+y-1)=0 & \text { if } y \geqslant 1-x\end{cases}
$$

and the boundary conditions:

$$
u(0, y)=0+y=y, \quad u(x, 1)=1-(x+1-1)^{2}=1-x^{2}
$$

A sketch of the characteristics and their direction (direction of increasing $s)$ is shown below.

1b

$$
\begin{cases}t u_{t}+2 u_{x}=0 & \text { for } x \in \mathbb{R}, t>0 \tag{2}\\ u(x, 0)=\sin (x) & \text { for } x \in \mathbb{R}\end{cases}
$$

Solution: Write the problem as

$$
\begin{cases}F(D u(X), u(X), X)=0 & \text { in } U \\ u=g & \text { on } \Gamma\end{cases}
$$

where $U=\mathbb{R} \times \mathbb{R}_{+}, \Gamma=\mathbb{R} \times\{0\}, X=\binom{x}{t}$ and $F(p, z, X)=p \cdot\binom{2}{t}$. We have $X^{0} \in \Gamma$ if and only if $t^{0}=0$, and a point $\left(p^{0}, z^{0}, X^{0}\right)$ is admissible if and only if
$t^{0}=0, \quad z^{0}=g\left(X^{0}\right)=e^{x^{0}}, \quad p_{1}^{0}=g_{x}\left(X^{0}\right)=\cos \left(x^{0}\right), \quad F\left(p^{0}, z^{0}, X^{0}\right)=0$.
But $F\left(p^{0}, z^{0}, X^{0}\right)=2 p_{1}^{0}=2 \cos \left(x^{0}\right)$, which is only zero for certain
choices of x^{0}, namely $x^{0}=\frac{\pi}{2}+k \pi$ for $k \in \mathbb{Z}$.
The noncharacteristic condition at $\left(p^{0}, z^{0}, X^{0}\right)$ reads

$$
0 \neq \nu\left(X^{0}\right) \cdot D_{p} F\left(p^{0}, z^{0}, X^{0}\right)=-t^{0}=0
$$

so the condition is never satisfied. Hence, the method of characteristics is not applicable.

The equations for characteristics are

$$
\dot{t}(s)=t(s), \quad \dot{x}(s)=2, \quad \dot{z}(s)=0
$$

with $t(0)=t^{0}=0, x(0)=x^{0}, z(0)=z^{0}=x^{0}$. We find that

$$
x(s)=x^{0}+2 s, \quad t(s)=t^{0} e^{s}
$$

Hence, $t^{0}=0$ would yield $t(s) \equiv 0$, and the characteristics never enter the domain U.

Without applying the boundary condition $t^{0}=0$ we get the relations

$$
s=\log (c t) \quad \Rightarrow \quad x(t)=x^{0}+2 \log (c t) \quad \text { for } c=\frac{1}{t^{0}} \in \mathbb{R}
$$

which can be seen in the figure below.

Problem 2 The wave equation (weight 10\%)

Let $T>0$. Find the general solution of the backwards problem

$$
\begin{cases}u_{t t}=u_{x x} & \text { for } x \in \mathbb{R}, t \in(0, T) \tag{3}\\ u(x, T)=g(x) & \text { for } x \in \mathbb{R} \\ u_{t}(x, T)=h(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

Is the solution unique?
Solution (approach 1): We define $v=u_{t}-u_{x}$ and obtain the system of transport equations

$$
\begin{cases}v_{t}+v_{x}=0 & \text { for } x \in \mathbb{R}, t \in(0, T) \\ v(x, T)=h(x)-g^{\prime}(x) & \text { for } x \in \mathbb{R} \\ u_{t}-u_{x}=v & \text { for } x \in \mathbb{R}, t \in(0, T) \\ u(x, T)=g(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

The characteristic for v going through a point (x, t) is $s \mapsto(x+s, t+s)$ and since v is constant along this curve we get for $s=0$ and $s=T-t$

$$
v(x, t)=v(x+T-t, T)=h(x+T-t)-g^{\prime}(x+T-t)
$$

Likewise, the characteristics for u are $s \mapsto(x-s, t+s)$, so integrating the equation along the characteristic over $s \in(0, T-t)$ gives

$$
\begin{aligned}
u(x, t) & =u(x-T+t, T)-\int_{0}^{T-t} v(x-s, t+s) d s \\
& =g(x-T+t)-\int_{0}^{T-t} h(x-s+T-t-s)-g^{\prime}(x-s+T-t-s) d s \\
& =-\frac{1}{2} \int_{x-T+t}^{x+T-t} h(y) d y+\frac{1}{2}(g(x-T+t)+g(x+T-t))
\end{aligned}
$$

Since every step in the above calculation was necessary, the solution must be unique.

Solution (approach 2): Let $v(x, t)=u(x, T-t)$ for $x \in \mathbb{R}, t \in[0, T]$. Then

$$
\begin{cases}v_{t t}=v_{x x} & \text { for } x \in \mathbb{R}, t \in(0, T) \\ v(x, 0)=g(x) & \text { for } x \in \mathbb{R} \\ v_{t}(x, 0)=-h(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

Hence, d'Alembert's formula gives

$$
v(x, t)=-\frac{1}{2} \int_{x-t}^{x+t} h(y) d y+\frac{1}{2}(g(x-t)+g(x+t))
$$

Since $u(x, t)=v(x, T-t)$ we conclude that

$$
u(x, t)=-\frac{1}{2} \int_{x-T+t}^{x+T-t} h(y) d y+\frac{1}{2}(g(x-T+t)+g(x+T-t)) .
$$

Since the solution v is unique, the solution u is automatically unique.

Problem 3 A conservation law (weight 5\%)

Find a weak solution of the problem

$$
\left\{\begin{array}{l}
u_{t}+f(u)_{x}=0 \quad \text { for } x \in \mathbb{R}, t>0 \tag{4}\\
u(x, 0)= \begin{cases}3 & \text { if } x<0 \\
1 & \text { if } x>0\end{cases}
\end{array}\right.
$$

where $f(u)=u^{4}$. Does your solution satisfy the entropy condition?
Solution: We make the ansatz

$$
u(x, t)= \begin{cases}3 & \text { for } x<s t \\ 1 & \text { for } x>s t\end{cases}
$$

for some $s \in \mathbb{R}$. The Rankine-Hugoniot condition demands that u is a classical solution on either side of the discontinuity (which it is, since constants solve (4)), and that the jump condition is satisfied:

$$
f(3)-f(1)=s(3-1) \quad \Leftrightarrow \quad s=\frac{3^{4}-1^{4}}{2}=40
$$

The flux function is convex, so the entropy condition reduces to the condition that

$$
f^{\prime}\left(u^{L}\right) \geqslant s \geqslant f^{\prime}\left(u^{R}\right) \quad \Leftrightarrow \quad 4 \cdot 3^{3}=108 \geqslant 40 \geqslant 4 \cdot 1^{3}=4
$$

which is clearly true. Hence, the function

$$
u(x, t)= \begin{cases}3 & \text { for } x<40 t \\ 1 & \text { for } x>40 t\end{cases}
$$

is the entropy solution of (4).

Problem 4 Duhamel's principle (weight 15\%)

4 a
Verify that $u(x, t)=e^{-t} g(x-b t)$ solves the advection-reaction equation

$$
\begin{cases}u_{t}+b \cdot D u=-u & \text { for } x \in \mathbb{R}^{d}, t>0 \tag{5}\\ u(x, 0)=g(x) & \text { for } x \in \mathbb{R}^{d}\end{cases}
$$

where $b \in \mathbb{R}^{d}$ is a given vector and $g \in C^{1}\left(\mathbb{R}^{d}\right)$ is a given function.
Solution: We have $u(x, 0)=e^{0} g(x-0)=g(x)$, and $u_{t}(x, t)=-e^{-t} g(x-b t)+e^{-t} D g(x-b t) \cdot(-b)=-u(x, t)-b \cdot D u(x, t)$, so u solves the PDE.

4b

Use Duhamel's principle to find the solution of the corresponding nonhomogeneous equation

$$
\begin{cases}u_{t}+b \cdot D u=-u+f & \text { for } x \in \mathbb{R}^{d}, t>0 \tag{6}\\ u(x, 0)=g & \text { for } x \in \mathbb{R}^{d}\end{cases}
$$

for a function $f \in C\left(\mathbb{R}^{d} \times[0, \infty)\right)$. As in $\mathbf{4 a}$, verify that your answer is indeed a solution of (6).

Solution: Let first $v=v(x, t ; s)$ for $t>s$ be the solution of

$$
\begin{cases}v_{t}+b \cdot D v=-v & \text { for } x \in \mathbb{R}^{d}, t>s \\ v(x, s)=f(x, s) & \text { for } x \in \mathbb{R}^{d}\end{cases}
$$

(Continued on page 6.)
which we, by $\mathbf{4 a}$, can write as

$$
v(x, t ; s)=e^{-(t-s)} f(x-b(t-s), s)
$$

Now define

$$
v(x, t)=\int_{0}^{t} v(x, t ; s) d s=\int_{0}^{t} e^{-(t-s)} f(x-b(t-s), s) d s
$$

Then

$$
\begin{aligned}
v_{t}(x, t)= & \left.e^{-(t-s)} f(x-b(t-s), s)\right|_{s=t} \\
& +\int_{0}^{t}-e^{-(t-s)} f(x-b(t-s), s)+e^{-(t-s)} D f(x-b(t-s), s) \cdot(-b) d s \\
= & f(x, t)-v(x, t)-b \cdot \int_{0}^{t} e^{-(t-s)} D f(x-b(t-s), s) d s \\
= & f(x, t)-v(x, t)-b \cdot D v(x, t),
\end{aligned}
$$

so v satisfies the inhomogeneous PDE , and $v(x, 0)=0$. To satisfy the initial data in (6) we add the solution from $4 \mathbf{a}$ to get

$$
u(x, t)=e^{-t} g(x-b t)+\int_{0}^{t} e^{-(t-s)} f(x-b(t-s), s) d s
$$

Then $u(x, 0)=e^{0} g(x-0)+0=g(x)$, and since u is the sum of the homogeneous and inhomogeneous equations, it solves the inhomogeneous equation.

Problem 5 Harmonic functions (weight 30\%)

Let $U \subset \mathbb{R}^{d}$ be open, bounded and connected, and let $u \in C^{\infty}\left(\mathbb{R}^{d}\right)$.

$5 a$

Show that if u is harmonic in U then $D^{\alpha} u$ is harmonic for any multi-index α.

Solution:

$$
\Delta\left(D^{\alpha} u\right)(x)=D^{\alpha}(\Delta u)(x)=0
$$

5b
Conversely, show that if $u_{x_{i}}$ is harmonic in U for every $i=1, \ldots, n$, then u satisfies

$$
\Delta u=a \quad \text { in } U
$$

for some constant $a \in \mathbb{R}$.
Solution: We have

$$
0=\Delta\left(u_{x_{i}}\right)(x)=(\Delta u)_{x_{i}}(x) \quad \forall i=1, \ldots, n
$$

Hence, for every i, the function $\Delta u(x)$ is constant in the i th variable in other words, Δu is constant.

5c
Assume u satisfies

$$
\begin{equation*}
-\Delta u=f \quad \text { in } U \tag{7}
\end{equation*}
$$

for a polynomial f of degree $k \in \mathbb{N}$. Prove the mean value formula

$$
\begin{equation*}
D^{\alpha} u(x)=\int_{B(x, r)} D^{\alpha} u(y) d y \tag{8}
\end{equation*}
$$

for any multi-index $|\alpha|>k$. For what $x \in U$ and $r>0$ is the formula valid? (You may use the mean value formula for harmonic functions.)

Solution: If f is a k th order polynomial then $D^{\alpha} f(x)=0$ for every $|\alpha|>k$. Hence,

$$
-\Delta\left(D^{\alpha} u\right)=0 \quad \text { in } U
$$

for any $|\alpha|>k$, that is, $D^{\alpha} u$ is harmonic in U. Thus, the mean value formula yields (8) for any $x \in U$ and $r>0$ such that $B(x, r) \subset U$.

$5 d$

Use $\mathbf{5 c}$ to prove the following maximum principle for any multi-index $|\alpha|>k$:

$$
\begin{equation*}
D^{\alpha} u(x) \leqslant \max _{\partial U} D^{\alpha} u \quad \forall x \in U \tag{9}
\end{equation*}
$$

Solution: Let $M=\max _{\bar{U}} D^{\alpha} u$. Then either $D^{\alpha} u(x)<M$ for all $x \in U$ (which clearly implies (9)), or there is some $x^{0} \in U$ where $D^{\alpha} u\left(x^{0}\right)=M$. Assume the latter. For any $x \in U$ and $r>0$ with $B(x, r) \subset U$ we have

$$
D^{\alpha} u(x)=f_{B(x, r)} D^{\alpha} u(y) d y \leqslant f_{B(x, r)} M d y=M
$$

with equality if and only if $D^{\alpha} u(y)=M$ for all $y \in B(x, r)$. Setting $x=x^{0}$ in the above computation yields equality between the left- and right-hand sides, so $D^{\alpha} u$ must be constant in $B(x, r)$. To show that $D^{\alpha} u(\bar{x})=M$ at any other point $\bar{x} \in U$ we select balls $B\left(x^{i}, r^{i}\right) \subset U$ for $i=0, \ldots, N$ so that $x^{i} \in B\left(x^{i-1}, r^{i-1}\right)$ for every $i=1, \ldots, N$ and such that $\bar{x} \in B\left(x^{N}, r^{N}\right)$. (This is possible since U is connected.) Repeating the above argument reveals that $D^{\alpha} u \equiv M$ in each ball, and hence also at \bar{x}. We conclude that $D^{\alpha} u \equiv M$ in U, and in particular, (9) holds.

Problem 6 (weight 25\%)

Let $U \subset \mathbb{R}^{n}$ be open, bounded and connected. Consider the advectiondiffusion problem

$$
\begin{cases}u_{t}+f(u)_{x}=\varepsilon u_{x x} & \text { for } x \in(0,1), t \in(0, T] \tag{10}\\ u(0, t)=u(1, t)=0 & \text { for } t \in(0, T] \\ u(x, 0)=g(x) & \text { for } x \in(0,1)\end{cases}
$$

(Continued on page 8.)
where $f(u)=u^{3}, \varepsilon>0$ is a given number and $g \in C([0,1])$ satisfies $g(0)=g(1)=0$. Let $u \in C^{2}((0,1) \times(0, T]) \cap C([0,1] \times[0, T])$ be a solution of (10).

6a Energy method

Prove that $E[u](t):=\int_{0}^{1} u(x, t)^{2} d x$ decreases over time.

Solution:

$\frac{d}{d t} E[u](t)=\int_{0}^{1} 2 u(x, t) u_{t}(x, t) d x=2 \int_{0}^{1} \varepsilon u(x, t) u_{x x}(x, t)-u(x, t) f(u(x, t))_{x} d x$ (integration by parts and the chain rule)

$$
\begin{aligned}
& =2 \varepsilon \underbrace{\left.u(x, t) u_{x}(x, t)\right|_{x=0} ^{x=1}}_{=0, \text { by the BC }}-2 \varepsilon \int_{0}^{1} u_{x}(x, t)^{2} d x-3 \int_{0}^{1} u(x, t)^{3} u(x, t)_{x} d x \\
& =\underbrace{-2 \varepsilon \int_{0}^{1} u_{x}(x, t)^{2} d x}_{\leqslant 0}-\frac{3}{4} \int_{0}^{1}\left(u(x, t)^{4}\right)_{x} d x
\end{aligned}
$$

(integration by parts)

$$
\leqslant \underbrace{-\left.\frac{3}{4} u(x, t)^{4}\right|_{x=0} ^{x=1}}_{=0, \text { by the BC }} .
$$

6b Maximum principle

Prove that $\min _{y \in[0,1]} g(y) \leqslant u(x, t) \leqslant \max _{y \in[0,1]} g(y)$ for every $x \in[0,1]$, $t \in[0, T]$.

Hint: Prove the result for $v^{\delta}(x, t)=u(x, t)-\delta t$ for some $\delta>0$ first. What equation does v^{δ} satisfy?

Solution: Let $v^{\delta}(x, t)=u(x, t)-\delta t$ for some $\delta>0$. Then $v_{x}^{\delta}=u_{x}$ and

$$
v_{t}^{\delta}=u_{t}-\delta=\varepsilon u_{x x}-f(u)_{x}-\delta=\varepsilon v_{x x}^{\delta}-f\left(v^{\delta}+\delta t\right)_{x}-\delta
$$

so writing $f\left(v^{\delta}+\delta t\right)_{x}=f^{\prime}\left(v^{\delta}+\delta t\right) v_{x}^{\delta}$ gives

$$
v_{t}^{\delta}+f^{\prime}\left(v^{\delta}+\delta t\right) v_{x}^{\delta}-v_{x x}^{\delta}<0
$$

Assume that v^{δ} attains a maximum at some point $\left(x^{0}, t^{0}\right) \in(0,1) \times$ $(0, T]$. Then

$$
v_{x}^{\delta}\left(x^{0}, t^{0}\right) \geqslant 0, \quad v_{x}^{\delta}\left(x^{0}, t^{0}\right)=0, \quad v_{x x}^{\delta}\left(x^{0}, t^{0}\right) \leqslant 0
$$

so

$$
0>v_{t}^{\delta}\left(x^{0}, t^{0}\right)+f^{\prime}\left(v^{\delta}\left(x^{0}, t^{0}\right)+\delta t^{0}\right) v_{x}^{\delta}\left(x^{0}, t^{0}\right)-v_{x x}^{\delta}\left(x^{0}, t^{0}\right) \geqslant 0
$$

a contradiction. Hence, v^{δ} attains its maximum somewhere along the set

$$
\Gamma=\{(x, t): t=0 \text { or } x \in\{0,1\}\}
$$

Passing $\delta \rightarrow 0$ yields for any $(x, t) \in[0,1] \times[0, T]$

$$
u(x, t)=\lim _{\delta \rightarrow 0} v^{\delta}(x, t) \leqslant \lim _{\delta \rightarrow 0} \max _{\Gamma} v^{\delta}=\max _{\Gamma} u
$$

$($ since $u=0$ at $x=0$ and $x=1)$

$$
=\max \left(\max _{y \in[0,1]} g(y), 0\right)
$$

$($ since $g(0)=0)$

$$
=\max _{y \in[0,1]} g(y)
$$

A similar procedure would yield the lower bound.

6c Uniqueness

Unlike for the heat equation, we cannot apply the results in $\mathbf{6 a}$ or $\mathbf{6 b}$ to prove uniqueness of the solution of (10). Why not?

Solution: The equation is nonlinear, so if u, v are two solutions then $w=u-v$ is not necessarily a solution. This means that the standard approach to proving uniqueness via a priori bounds such as the energy bound or maximum principle will not work.

