UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT4301 — Partial Differential Equations
Day of examination: Thursday 28 November 2019

Examination hours:  09:00-13:00

This problem set consists of 9 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1 (weight 15%)

Consider the following first-order PDEs. For each PDE:

e If the problem has a solution,

— use the method of characteristics to solve it,

— verify that the formula that you have found is correct.
e [f the problem does not have a solution, explain why.

e In either case, draw some of the characteristic curves.

la
Uy — Uy =0 for z,y € (0,1)
U(O,y) =Y for y € [07 1] (1>
uw(z,1) =1—22 forz €0,1].

Solution: The equations of characteristics are

with 2(0) = 2%, y(0) = 3%, 2(0) = 20 and (2%¢°) € T = {(z,y) €
OU : z = 0ory = 1}, where U = (0,1)2. (Since these equations are
independent of p = Du, we do not need the equation for p.) The solution
is
z(s) =20 + s, y(s) =% — s, z(s) = 2°.

We have 2° = 0 if and only if y(s) < 1 —x(s) for all 5, and y° = 1 if and
only if y(s) > 1 —z(s) for all s. Hence, for an arbitrary point (z,y) € U
we have (x(s),y(s)) = (z,y) if and only if s = 2, 20 = 0, y* =z + y
wheny<l—z,andy’=1,s=1—-y,2°=2+y—1wheny >1—=z.

(Continued on page 2.)
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This leads to the solution

(@, y) = W=zx+y if y
’ 1— (@2 =1-(z+y—-12 ify

(Note that the solution is continuous across y = 1 — x.) We verify that
u solves the PDE:

1-1=0 if y
U:E(x,y) - Uy(%?/) = { y

2x+y—1)+2(xz+y—1)=0 if
and the boundary conditions:
u(0,9) =0+y=y, ulz,l)=1-(z+1-1)°>=1-2"

A sketch of the characteristics and their direction (direction of increasing
s) is shown below.

1b

tuy + 2u, =0 forzreR, t >0
u(z,0) =sin(z) for x € R

Solution: Write the problem as
F(Du(X),u(X),X)=0 inU
u=g on I

where U = RxR,, ' = Rx {0}, X = (?) and F(p, z, X) :p.<§>. We

have X € T if and only if t° = 0, and a point (p?, 2%, X°) is admissible
if and only if

=0, 2= g(XO) = exo, p(l) = gx(XO) = Cos(xo), F(pO,ZO,XO) =0

But F(p%, 2%, X% = 2p? = 2cos(z"), which is only zero for certain

(Continued on page 3.)
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choices of 2°, namely 20 = 5 + km for k € Z.
The noncharacteristic condition at (p°, 2%, X°) reads

0#v(X°) - DF(p°, 2°, X0 = —1° =0,

so the condition is never satisfied. Hence, the method of characteristics
is not applicable.
The equations for characteristics are

with #(0) = t° = 0, 2(0) = 2%, 2(0) = 2° = 2°. We find that
z(s) = 2% + 2s, t(s) = t%®.

Hence, t° = 0 would yield #(s) = 0, and the characteristics never enter
the domain U.
Without applying the boundary condition t° = 0 we get the relations

1
s = log (ct) = z(t) = 2° + 2log(ct) for ¢ = 70 eR
which can be seen in the figure below.

t

— )(

Problem 2 The wave equation (weight 10%)

Let T' > 0. Find the general solution of the backwards problem

Uy = Uy forz e R, t € (0,7)
u(z,T) =g(x) forzxelR (3)
ug(x, T) = h(x) forz e R.

Is the solution unique?

Solution (approach 1): We define v = uy —u, and obtain the system
of transport equations

ve+ v, =0 forx eR, t € (0,T)
v(z,T) = h(x) — ¢ (z) forxeR
Up — Uy =V forx eR, t € (0,T)
u(z,T) = g(z) for x € R.

(Continued on page 4.)
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u(x,t)

The characteristic for v going through a point (z,t) is s — (z+s,t+ s)
and since v is constant along this curve we get for s=0and s =T — ¢

v(z,t)=v@+T—t, T)=h(z+T—t)— g (x+T—1t).

Likewise, the characteristics for u are s — (x — s,t + s), so integrating
the equation along the characteristic over s € (0,7 — t) gives

T—t
u(:p—T—i—t,T)—/ v(z —s,t+s)ds
0
T—t
g(m—T—l—t)—/ h(z—s+T—t—s)—g(x—s+T —t—s)ds
0

1 +T—t 1
—/ h(y)dy+ = (gl =T +t)+glxa+T —1t)).
2 c—T+t 2

Since every step in the above calculation was necessary, the solution
must be unique.

Then

Solution (approach 2): Let v(z,t) = u(z,T—t) forz € R, t € [0,T].

Hence, d’Alembert’s formula gives

Since u(z,t) = v(x,T — t) we conclude that

x+T1T—t
u(:v,t)zl/ h(y)dy+%(g(w—TnLt)ng(erT—t)).

Since the solution v is unique, the solution u is automatically unique.

Vit = Usg forx e R, t € (0,T)
v(z,0) = g(x) for x € R
ve(z,0) = —h(z) for z € R.

T+t
vat) =5 [ ) di+ (a1 + 9o+ ).

2 Jo—ris

Problem 3 A conservation law (weight 5%)

Find a weak solution of the problem

u + f(u)y =0 forr eR, t>0

(i, 0) = 3 ifxz<0 (4)
’ 1 ifz>0

where f(u) = u*. Does your solution satisfy the entropy condition?

Solution: We make the ansatz

(2,1) 3 forz < st
w(x,t) =
1 for z > st

(Continued on page 5.)




Exam in MAT4301, Thursday 28 November 2019 Page 5

for some s € R. The Rankine-Hugoniot condition demands that u is a
classical solution on either side of the discontinuity (which it is, since
constants solve (4)), and that the jump condition is satisfied:

34_14
2

= 40.

fB)-f)=sB-1) & s=

The flux function is convex, so the entropy condition reduces to the
condition that

f'wh) > s> f'(u®) & 4-33=108>40>4-1° =4,

which is clearly true. Hence, the function

u(z,t) =

3 for xz < 40t
1 for x > 40¢

is the entropy solution of (4).

Problem 4 Duhamel’s principle (weight 15%)

4a

Verify that u(z,t) = e tg(z — bt) solves the advection-reaction equation

()

u+b-Du=—u forzeR t>0
u(z,0) = g(x) for z € R?

where b € R? is a given vector and g € C1(R?) is a given function.

Solution: We have u(x,0) = eg(z — 0) = g(z), and
ug(z,t) = —e 'g(z — bt) + e ' Dg(x — bt) - (=b) = —u(z,t) — b- Du(z, 1),

so u solves the PDE.

4b

Use Duhamel’s principle to find the solution of the corresponding
nonhomogeneous equation

{ut+b-Du:u+f for z € RY, ¢ >0 ©)

u(z,0) =g for z € RY

for a function f € C(RYx [0,00)). As in 4a, verify that your answer is indeed
a solution of (6).

Solution: Let first v = v(z,t;s) for t > s be the solution of

v+b-Dv=—v forzeR? t>s
v(z,s) = f(z,s) forz € R?

(Continued on page 6.)
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which we, by 4a, can write as
v(z, t;s) = e fla — bt — s), ).

Now define

v(z,t) = /0 v(x,t;s)ds = / e~ flz —b(t — s), 5) ds.

0

Then

v(z,t) = ef(tfs)f(x —b(t—s),s)

s=t

+ /t —e S f—b(t —s5),s) + e D f(x — bt —s), ) - (—b)ds
0
= f(z,t) —v(x,t) — b- / e D f(x —b(t —s),s)ds
0
= f(z,t) —v(z,t) — b- Du(z,1),

so v satisfies the inhomogeneous PDE, and v(x,0) = 0. To satisfy the
initial data in (6) we add the solution from 4a to get

u(z,t) = e tg(z — bt) + /t e~ f(x —b(t — s), 5) ds.
0

Then u(z,0) = eg(z — 0) + 0 = g(x), and since u is the sum
of the homogeneous and inhomogeneous equations, it solves the
inhomogeneous equation.

Problem 5 Harmonic functions (weight 30%)

Let U € R? be open, bounded and connected, and let v € C*®(R%).

5a
Show that if w is harmonic in U then D®u is harmonic for any multi-index
Q.

Solution:

A(D%u)(x) = D*(Au)(xz) = 0.

5b
Conversely, show that if u,, is harmonic in U for every i = 1,...,n, then u
satisfies

Au=a inU

for some constant a € R.

Solution: We have

0= A(ug,)(z) = (Au),, (v) Vi=1,...,n.

(Continued on page 7.)
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Hence, for every i, the function Au(x) is constant in the ith variable —
in other words, Aw is constant.

5c
Assume u satisfies
—Au=f in U (7)
for a polynomial f of degree k € N. Prove the mean value formula
D)= f  Duly)dy ©
B(z,r)

for any multi-index |a| > k. For what x € U and r > 0 is the formula valid?
(You may use the mean value formula for harmonic functions.)

Solution: If f is a kth order polynomial then D®f(z) = 0 for every
|a| > k. Hence,
—A(D%) =0 inU

for any |a| > k, that is, D% is harmonic in U. Thus, the mean value
formula yields (8) for any € U and r > 0 such that B(z,r) C U.

5d
Use 5c¢ to prove the following maximum principle for any multi-index |a| > k:

D%(z) < maxD%%  VzeUl. 9)
oU

Solution: Let M = maxg D*u. Then either D*u(x) < M for allz € U
(which clearly implies (9)), or there is some 2° € U where D%u(2°) = M.
Assume the latter. For any z € U and r > 0 with B(z,r) C U we have

D%u(z) = ][ D%u(y) dy < ][ Mdy =M,
B(z,r) B(z,r)

with equality if and only if D%u(y) = M for all y € B(x,r). Setting
2 = 20 in the above computation yields equality between the left- and
right-hand sides, so D“u must be constant in B(z,r). To show that
D%u(Z) = M at any other point Z € U we select balls B(z%,r%) C U for
i=0,...,N so that 2* € B(z*~1,r*~1) for every i = 1,..., N and such
that z € B(z™,r"). (This is possible since U is connected.) Repeating
the above argument reveals that D®u = M in each ball, and hence also
at . We conclude that D*u = M in U, and in particular, (9) holds.

Problem 6 (weight 25%)

n

> : Consider the advection-
diffusion problem
ur + f(u)y = eugy  for x € (0,1), t € (0,T]
u(0,t) =u(l,t) =0 forte (0,7] (10)
u(z,0) = g(z) for x € (0,1)

(Continued on page 8.)
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where f(u) = u®, ¢ > 0 is a given number and g € C([0,1]) satisfies
g(0) = g(1) = 0. Let u € C?((0,1) x (0,T]) N C([0,1] x [0,T]) be a solution
of (10).

6a Energy method

Prove that Eful(t) := fol u(x,t)? dr decreases over time.

Solution:

1 1
%E[u] (t) = /0 2u(x, t)u(z,t) de = 2/0 ew(x, ) ugy(x, t) — u(z, t) f(u(z, t))y do

(integration by parts and the chain rule)

= 2cu(z, t)ug(x,t)

z=0
=0, by the BC

1 1
= —26/ g (z,t)? da —3/ (u(, t)4)x dx
0 4 0

<0

=1 1 1
—25/ g (z,t)? d — 3/ u(z, t)3u(z, t), do
0 0

(integration by parts)

3 =1
< - Zu(xa t)4

=0, by the BC

=0 '

6b Maximum principle

Prove that mingc(o1)9(y) < w(x,t) < maxyei19(y) for every z € [0,1],
te[0,T].

Hint: Prove the result for v’ (z,t) = u(z,t) — 6t for some § > 0 first.
What equation does v° satisfy?

Solution: Let v(x,t) = u(x,t) — 6t for some 6 > 0. Then v} = u, and
vf =u— 0 = eUgy — f(u)y — 0 = svgx — f(v(s + 0t), — 0,
so writing f(v? 4 6t), = £/ (v + ot)vd gives
v + f (v + 6t)wS — v, < 0.

Assume that v attains a maximum at some point (z°,¢°) € (0,1) x
(0,7]. Then
w0 (29,%) > 0, 09 (29,%) = 0, 00, (2°,1%) <0,

SO

0> vf(xo,to) + f’(v‘s(xo,to) + (5t0)vg(x0,t0) = Ufm<l’0,t0) >0,

(Continued on page 9.)
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a contradiction. Hence, v° attains its maximum somewhere along the
set
I'={(xz,t) : t=0orxze{0,1}}.
Passing 0 — 0 yields for any (z,t) € [0,1] x [0,T]
1)

u(z,t) = %i_l}l(l) v (z,t) < %i_r)r(l) maxv® = maxu

(sinceu=0atx =0 andz=1)

= max (yrél[gﬁ} 9(y), 0)

(since g(0) = 0)

= max
y€[0,1]

A similar procedure would yield the lower bound.

6¢c  Uniqueness

Unlike for the heat equation, we cannot apply the results in 6a or 6b to
prove uniqueness of the solution of (10). Why not?

Solution: The equation is nonlinear, so if u,v are two solutions then
w = u — v is not necessarily a solution. This means that the standard
approach to proving uniqueness via a priori bounds such as the energy
bound or maximum principle will not work.

THE END



