Problem sheet for week 1 MAT4301

Ulrik Skre Fjordholm

Updated August 20, 2019

Vector calculus

1. Compute the gradient Du of the following functions:

(a)
$$u(x) = \sin(x_1 x_2^2 - x_3)$$
 for $x = (x_1, x_2, x_3) \in \mathbb{R}^3$

(b)
$$u(x) = |x|^2$$
 for $x \in \mathbb{R}^n$

(c)
$$u(x) = |x|$$
 for $x \in \mathbb{R}^n$

(Here and elsewhere, $|x| = \sqrt{x_1^2 + \dots + x_n^2}$ denotes the Euclidean norm of x.)

2. Write out the expression

$$\sum_{|\alpha|=2} \alpha! x^{\alpha}$$

where $x = (x_1, x_2)$ is some point in \mathbb{R}^2 .

(Here and elsewhere we use the convention that α denotes a multiindex, so the sum runs over all pairs of nonnegative integers $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}_0^2$ whose sum $|\alpha| = \alpha_1 + \alpha_2$ equals 2.)

- 3. Compute the partial derivative $D^{\alpha}u$ for all multiindices α of length $|\alpha| = 1$ and $|\alpha| = 2$, for each of the functions in problem 1.
- **4.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a given function, fix a point $x \in \mathbb{R}^2$ and define g(t) = f(tx). Write out g'(t) and g''(t) in terms of partial derivatives of f. Use multiindex notation.
- **5.** Solve problems 3, 4, 5 in Section 1.5 in Evans.

Hint for 1.5.3: Use induction on n, not k. Recall the binomial theorem, $(a+b)^m = \sum_{r=0}^m \binom{m}{r} a^r b^{m-r}$, where $\binom{m}{r} = \frac{m!}{r!(m-r)!}$ are the binomial coefficients.

Hint for 1.5.4: Use induction on n. Recall Leibniz' formula in one dimension: $\partial_{x_n}^k(fg) = \sum_{r=0}^k \binom{k}{r} \partial_{x_n}^r f \partial_{x_n}^{k-r} g$ for functions $f, g \in C^k(\mathbb{R}^n)$.

Hint for 1.5.5: As mentioned in the exercise, define g(t) = f(tx) for $t \in \mathbb{R}$. Write down the kth order Taylor expansion for g(1) (including error term), expanded around t = 0. Show that the mth derivative of g can be written as $g^{(m)}(t) = \sum_{|\alpha|=m} {m \choose \alpha} x^{\alpha} D^{\alpha} f(tx)$. To this end:

• Show first that

$$g^{(m)}(t) = \sum_{i_1=1}^n \cdots \sum_{i_m=1}^n x_{i_1} \cdots x_{i_k} \partial_{x_{i_1}} \cdots \partial_{x_{i_m}} f(tx).$$

• Next, recall the fact that for a multiindex α of length $|\alpha| = m$, the number $\binom{m}{\alpha} = \frac{m!}{\alpha_1! \cdots \alpha_n!}$ is the number of ways to extract m balls of n different colors from a bag, picking α_1 of the first color, α_2 of the second color, and so on. Use this fact to rewrite the above expression for $g^{(m)}(t)$ in multiindex notation.

Integration

6. Compute the integral

$$\int_{B(0,1)} \operatorname{div} \mathbf{F}(x) \, dx$$

where B(0, 1) is the unit ball in \mathbb{R}^3 and $\mathbf{F}(x) = |x|^2 x$. What do you get when B(0, 1) is the unit ball (or *disc*) in \mathbb{R}^2 ?

Hint: Use the divergence theorem (Theorem 1(ii) in §C.2).

- 7. Use the Gauss-Green theorem (Theorem 1(i) in §C.2) to prove all of the other identities in §C.2.
- **8.** A function $u: \mathbb{R}^n \to \mathbb{R}$ is *locally integrable* if for every bounded set $K \subset \mathbb{R}^n$, the integral

$$\int_{K} |u(x)| \, dx$$

is finite.

- (a) Show that $u(x) := \log |x|$ for $x \in \mathbb{R}^n$ is locally integrable, for any number of dimensions $n \in \mathbb{N}$.
- (b) Let $u(x) := |x|^p$ for $x \in \mathbb{R}^n$ and $p \in \mathbb{R}$ a given number. For what values of p is this function locally integrable?

Hint: If u is bounded on K (i.e., $\exists C > 0$ such that $|u(x)| \le C$ for all $x \in K$) then u is integrable over K, so it suffices to concentrate on bounded domains K where u is unbounded.

PDEs

9. Find a function $u: \mathbb{R}^3 \to \mathbb{R}$ satisfying the PDE

$$-\Delta u = 1 \qquad \text{in } \mathbb{R}^3.$$

Hint: Try the function $v(x) = |x|^2$ first.

- **10.** Solve the previous problem with \mathbb{R}^3 replaced by \mathbb{R}^n , for any $n \in \mathbb{N}$.
- 11. Solve problem 1.5.1 in Evans.