Problem sheet for week 1
 MAT4301

Ulrik Skre Fjordholm

Updated August 20, 2019

Vector calculus

1. Compute the gradient $D u$ of the following functions:
(a) $u(x)=\sin \left(x_{1} x_{2}^{2}-x_{3}\right)$ for $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$
(b) $u(x)=|x|^{2}$ for $x \in \mathbb{R}^{n}$
(c) $u(x)=|x|$ for $x \in \mathbb{R}^{n}$
(Here and elsewhere, $|x|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ denotes the Euclidean norm of x.)
2. Write out the expression

$$
\sum_{|\alpha|=2} \alpha!x^{\alpha}
$$

where $x=\left(x_{1}, x_{2}\right)$ is some point in \mathbb{R}^{2}.
(Here and elsewhere we use the convention that α denotes a multiindex, so the sum runs over all pairs of nonnegative integers $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}_{0}^{2}$ whose sum $|\alpha|=\alpha_{1}+\alpha_{2}$ equals 2.)
3. Compute the partial derivative $D^{\alpha} u$ for all multiindices α of length $|\alpha|=1$ and $|\alpha|=2$, for each of the functions in problem 1.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a given function, fix a point $x \in \mathbb{R}^{2}$ and define $g(t)=f(t x)$. Write out $g^{\prime}(t)$ and $g^{\prime \prime}(t)$ in terms of partial derivatives of f. Use multiindex notation.
5. Solve problems 3, 4, 5 in Section 1.5 in Evans.

Hint for 1.5.3: Use induction on n, not k. Recall the binomial theorem, $(a+b)^{m}=$ $\sum_{r=0}^{m}\binom{m}{r} a^{r} b^{m-r}$, where $\binom{m}{r}=\frac{m!}{r!(m-r)!}$ are the binomial coefficients.
Hint for 1.5.4: Use induction on n. Recall Leibniz' formula in one dimension: $\partial_{x_{n}}^{k}(f g)=$ $\sum_{r=0}^{k}\binom{k}{r} \partial_{x_{n}}^{r} f \partial_{x_{n}}^{k-r} g$ for functions $f, g \in C^{k}\left(\mathbb{R}^{n}\right)$.
Hint for 1.5.5: As mentioned in the exercise, define $g(t)=f(t x)$ for $t \in \mathbb{R}$. Write down the k th order Taylor expansion for $g(1)$ (including error term), expanded around $t=0$. Show that the m th derivative of g can be written as $g^{(m)}(t)=\sum_{|\alpha|=m}\binom{m}{\alpha} x^{\alpha} D^{\alpha} f(t x)$. To this end:

- Show first that

$$
g^{(m)}(t)=\sum_{i_{1}=1}^{n} \cdots \sum_{i_{m}=1}^{n} x_{i_{1}} \cdots x_{i_{k}} \partial_{x_{i_{1}}} \cdots \partial_{x_{i_{m}}} f(t x) .
$$

- Next, recall the fact that for a multiindex α of length $|\alpha|=m$, the number $\binom{m}{\alpha}=\frac{m!}{\alpha_{1}!\cdots \alpha_{n}!}$ is the number of ways to extract m balls of n different colors from a bag, picking α_{1} of the first color, α_{2} of the second color, and so on. Use this fact to rewrite the above expression for $g^{(m)}(t)$ in multiindex notation.

Integration

6. Compute the integral

$$
\int_{B(0,1)} \operatorname{div} \mathbf{F}(x) d x
$$

where $B(0,1)$ is the unit ball in \mathbb{R}^{3} and $\mathbf{F}(x)=|x|^{2} x$. What do you get when $B(0,1)$ is the unit ball (or disc) in \mathbb{R}^{2} ?
Hint: Use the divergence theorem (Theorem 1(ii) in §C.2).
7. Use the Gauss-Green theorem (Theorem 1(i) in §C.2) to prove all of the other identities in §C.2.
8. A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is locally integrable if for every bounded set $K \subset \mathbb{R}^{n}$, the integral

$$
\int_{K}|u(x)| d x
$$

is finite.
(a) Show that $u(x):=\log |x|$ for $x \in \mathbb{R}^{n}$ is locally integrable, for any number of dimensions $n \in \mathbb{N}$.
(b) Let $u(x):=|x|^{p}$ for $x \in \mathbb{R}^{n}$ and $p \in \mathbb{R}$ a given number. For what values of p is this function locally integrable?

Hint: If u is bounded on K (i.e., $\exists C>0$ such that $|u(x)| \leqslant C$ for all $x \in K$) then u is integrable over K, so it suffices to concentrate on bounded domains K where u is unbounded.

PDEs

9. Find a function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfying the PDE

$$
-\Delta u=1 \quad \text { in } \mathbb{R}^{3}
$$

Hint: Try the function $v(x)=|x|^{2}$ first.
10. Solve the previous problem with \mathbb{R}^{3} replaced by \mathbb{R}^{n}, for any $n \in \mathbb{N}$.
11. Solve problem 1.5.1 in Evans.

