Problem sheet for week 3 MAT4301

Ulrik Skre Fjordholm

September 5, 2019

1. (Problem 2.5.4 in Evans) Give a direct proof that if $u \in C^2(U) \cap C(\overline{U})$ is harmonic within a bounded open set U, then

$$\max_{\bar{U}} u = \max_{\partial U} u$$

Hint: Define $u_{\varepsilon} := u + \varepsilon |x|^2$ for $\varepsilon > 0$, and show u_{ε} cannot attain its maximum over \overline{U} at an interior point.

Hint: Prove the above by contradiction by assuming that u_{ε} has a maximum at some $x_0 \in U$. What is then $\Delta u_{\varepsilon}(x_0)$?

2. (*Problem 2.5.5 in Evans*) We say $v \in C^2(U) \cap C(\overline{U})$ is subharmonic if

$$-\Delta v \leqslant 0 \qquad \text{in } U. \tag{1}$$

(a) Prove for subharmonic v that

$$v(x) \leqslant \oint_{B(x,r)} v \, dy$$
 for all $B(x,r) \subset U$. (2)

- (b) Prove that therefore $\max_{\bar{U}} v = \max_{\partial U} v$.
- (c) Let $\varphi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume that u is harmonic and $v := \varphi(u)$. Prove v is subharmonic.
- (d) Prove $v := |Du|^2$ is subharmonic, whenever u is harmonic.

3. Repeat problem 1 for *subharmonic* functions.

4. (*Problem 2.5.6 in Evans*) Let U be a bounded, open subset of \mathbb{R}^n . Prove that there exists a constant C, depending only on U, such that

$$\max_{\bar{U}} |u| \leq C \left(\max_{\partial U} |g| + \max_{\bar{U}} |f| \right)$$
(3)

whenever u is a smooth solution of

$$\begin{cases} -\Delta u = f & \text{in } U \\ u = g & \text{on } \partial U. \end{cases}$$
(4)

Hint: $-\Delta(u + \frac{|x|^2}{2n}\lambda) \leq 0$ for $\lambda := \max_{\bar{U}} |f|$. Use the same technique as in problem 1.