Problem sheet for week 8 MAT4301

Ulrik Skre Fjordholm

October 9, 2019

1. (a) Find a solution formula for the initial value problem

$$\begin{cases} u_t = k\Delta u & (x \in \mathbb{R}^n, t > 0) \\ u(x, 0) = g(x) & (x \in \mathbb{R}^n) \end{cases}$$
(1)

for some k > 0 and $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$.

Recall: k is the heat conductivity, indicating how quickly heat is transported through the material.

- (b) What would happen for negative k?
- (c) Find a solution formula for the initial value problem

$$\begin{cases} u_t(x,t) = k(t)\Delta u(x,t) & (x \in \mathbb{R}^n, t > 0) \\ u(x,0) = g(x) & (x \in \mathbb{R}^n) \end{cases}$$
(2)

for a continuous function $k : [0, \infty) \to (0, \infty)$.

- **2.** (*Problem 2.5.12 from Evans*) Suppose *u* is smooth and solves $u_t = \Delta u$ in $\mathbb{R}^n \times (0, \infty)$.
 - (a) Show that $u^{\lambda}(x,t) := u(\lambda x, \lambda^2 t)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
 - (b) Use (a) to show that $v(x,t) := x \cdot Du(x,t) + 2tu_t(x,t)$ solves the heat equation as well.

Hint: Compute $\frac{\partial}{\partial \lambda} u^{\lambda}(x, t)$.

3. (Problem 2.5.14 from Evans) Write down an explicit formula for a solution of

$$\begin{cases} u_t + cu = \Delta u + f & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$
(3)

where $c \in \mathbb{R}$ is a constant.

Hint: Pretend first that the Δu term is not there and multiply the equation by an integrating factor. Reduce the problem to one for which you already know the solution.

Remark: The term cu is a *reaction term* – it will "produce" or "remove" heat at a rate proportional to u(x, t).

4. (*Part of the proof of Theorem 6*) Let $T, \varepsilon > 0$. Show that the function

$$w(x,t) = \frac{1}{(T+\varepsilon-t)^{n/2}} e^{|x|^2/4(T+\varepsilon-t)}$$

satisfies the heat equation $w_t = \Delta w$ for $t \in (0, T]$, $x \in \mathbb{R}^n$. Note that w(x, t) increases very quickly as $|x| \to \infty$.