MANDATORY ASSIGNMENT
 MAT4301 (PARTIAL DIFFERENTIAL EQUATIONS)-FALL 2021

INFORMATION

All mandatory assignments must be uploaded via Canvas.

- The assignment must be submitted as a single PDF file.
- Scanned pages must be clearly legible.
- The submission must contain your name, course and assignment number.

If these requirements are not met, the assignment will not be evaluated. Read the information about mandatory assignments carefully:[http://www.uio.no/english/studies/ examinations/compulsory-activities/mn-math-mandatory.html].

To have a passing grade you must have satisfactory answers to at least 50% of the questions and have attempted to solve all of them.

PROBLEM 1

a)

Suppose $u \in C^{2}\left(\mathbb{R}^{n}\right)$ is a solution to $\Delta u=0$ in \mathbb{R}^{n} and satisfies

$$
|u(x)| \leq K|x|^{a}, \quad x \in \mathbb{R}^{n},
$$

for some constants $K>0$ and $a \in(0,1)$. Show that u must necessarily be constant.

b)

Let Ω be a bounded and open subset of \mathbb{R}^{n}. Consider a second order linear partial differential operator L defined by

$$
L[u]=\sum_{i, j=1}^{n} a_{i, j}(x) \partial_{x_{i} x_{j}}^{2} u+\sum_{i=1}^{n} b_{i}(x) \cdot \partial_{x_{i}} u+c(x), \quad u \in C^{2}(\Omega),
$$

where $a_{i, j}, b_{i}, c$ are continuous functions on Ω. Besides, $a_{i, j}=a_{j, i}$ for all i, j, so that the matrix $a=\left\{a_{i, j}\right\}_{i, j=1}^{n}$ is symmetric. We say that L is uniformly elliptic if there is a number $\lambda>0$ such that $\sum_{i, j} a_{i, j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$, for all $x \in \Omega$.
(i) Let $\gamma(x)$ be a continuous function that is lower bounded by a number $\gamma_{0}>0$ for all x. Show that $L[u]=\gamma(x) \Delta u$ is uniformly elliptic.
(ii) Suppose $n=2$, and let $\alpha=\alpha(x), \beta=\beta(x)$ be continuous functions on $\Omega \subset \mathbb{R}^{2}$. Show that

$$
L[u]=\left(1+\alpha^{2}(x)\right) \partial_{x_{1} x_{1}}^{2} u+2 \alpha(x) \beta(x) \partial_{x_{1} x_{2}}^{2} u+\left(1+\beta^{2}(x)\right) \partial_{x_{2} x_{2}}^{2} u
$$

is a uniformly elliptic partial differential operator.
c)

Let Ω be a connected, bounded and open subset of \mathbb{R}^{n}. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfies the uniformly elliptic PDE

$$
L[u]:=\Delta u+b \cdot D u=0 \quad \text { in } \Omega,
$$

where $b=b(x)=\left(b_{1}(x), \ldots, b_{n}(x)\right)$ is a vector of continuous functions. Establish the weak maximum principle, which asserts that

$$
\min _{\partial \Omega} u \leq u(x) \leq \max _{\partial \Omega} u, \quad x \in \bar{\Omega}
$$

Hint: Show that $u_{\varepsilon}(x):=u+\varepsilon v(x), \varepsilon>0$, cannot attain its maximum at an interior point of Ω, where $v(x)=e^{c x_{1}}$ and $c>0$ is a suitably chosen constant.

d)

Prove that there exists at most one solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ of the boundary value problem

$$
\Delta u+b \cdot D u=f \quad \text { in } \Omega, \quad u=g \quad \text { on } \partial \Omega
$$

where $b=b(x)=\left(b_{1}(x), \ldots, b_{n}(x)\right): \Omega \rightarrow \mathbb{R}^{n}, f: \Omega \rightarrow \mathbb{R}$ and $g: \partial \Omega \rightarrow \mathbb{R}$ are given continuous functions.

PROBLEM 2

Let Ω be a connected, bounded and open subset of \mathbb{R}^{n}. A function $u \in C^{2}(\bar{\Omega})$ is called superharmonic (in Ω) if $\Delta u \leq 0$ in Ω. Suppose u is superharmonic. Then it is known that

$$
u(x) \geq \frac{1}{|B(x, r)|} \int_{B(x, r)} u d y
$$

for any ball $B(x, r) \subset \Omega$ (mean value formula for superharmonic functions).
a)

For a superharmonic function u prove that if

$$
\min _{\bar{\Omega}} u=u\left(x_{0}\right)
$$

for some $x_{0} \in \Omega$ (interior minimum), then $u \equiv$ constant.
b)

Suppose $u \in C^{2}(\bar{\Omega})$ satisfies the (nonlinear) PDE $\Delta u+f(u)=0$ in Ω and $u=0$ on $\partial \Omega$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given function.
(i) Suppose f is positive, $f \geq 0$. Prove that either $u>0$ in Ω or $u \equiv 0$.
(ii) Suppose $f(u)=u\left(1-u^{2}\right)$. Show that $u(x) \leq 1$ for all $x \in \Omega$. Hint: Argue by contradiction, assuming that $M:=\max _{\bar{\Omega}} u>1$. Similarly, prove that $u \geq-1$.
c)

Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ solve the Poisson equation

$$
-\Delta u=f \text { in } \mathbb{R}^{n}, \quad \text { where } f \in C\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)
$$

Suppose $u \rightarrow 0$ as $|x| \rightarrow \infty$, sufficiently fast to justify integration by parts. Show that

$$
(2 \mathrm{c}-1) \quad\left\|u_{x_{i} x_{j}}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}, \quad i, j=1, \ldots, n
$$

Remark: From the Poisson equation, it follows immediately that the sum of the second order "diagonal" partial derivatives $u_{x_{i} x_{i}}$ is a square-integrable function, if the right-hand side f is. The result $(2 c-1)$ is surprisingly much stronger; it shows that each individual second order partial derivative $u_{x_{i}, x_{j}}$ (not only the diagonal ones!) is a square-integrable function.

PROBLEM 3

a)

Let Ω be a bounded open set in \mathbb{R}^{n}. Suppose that $u \in C^{2,1}(\Omega \times(0, \infty))$ satisfies the parabolic PDE

$$
u_{t}-\Delta u+c(x, t) u=0 \quad \text { in } \Omega \times(0, \infty)
$$

where $c=c(x, t)$ is a continuous function, $M:=\|c\|_{L^{\infty}}<\infty$. Let $S \in C^{2}(\mathbb{R})$ be a positive convex function satisfying

$$
\left|z S^{\prime}(z)\right| \leq K S(z), \quad z \in \mathbb{R}
$$

for some constant $K>0$. Show that $S(u)$ satisfies the inequality
$(3 \mathrm{a}-1) \quad S(u)_{t}-\Delta S(u) \leq C S(u) \quad$ in $\Omega \times(0, \infty)$,
where $C=M K>0$ is a constant.
b)

Let Ω be a bounded open set in \mathbb{R}^{n}, with outward unit normal vector ν. Consider the problem

$$
\begin{align*}
& u_{t}-\Delta u+c(x, t) u=f, \quad x \in \Omega, t>0 \\
& u(x, 0)=u_{0}(x), \quad x \in \Omega \tag{3b-1}\\
& u(x, t)=h(x, t), \quad x \in \partial \Omega, t \geq 0
\end{align*}
$$

where c, u_{0}, h are continuous functions. Prove that there exists a constant $L>0$ such that

$$
\begin{equation*}
\|u(\cdot, t)-v(\cdot, t)\|_{L^{2}(\Omega)} \leq e^{L t}\left\|u_{0}-v_{0}\right\|_{L^{2}(\Omega)} \tag{3b-2}
\end{equation*}
$$

where u, v are two classical solutions of $(3 \mathrm{~b}-1)$ with initial functions u_{0}, v_{0}, respectively. Explain why this stability result immediately implies the uniqueness of solutions.
c)

Let $\Phi(x, t)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{4 t}}$ be the fundamental solution of the heat equation. Let $f(x, t)$ be a compactly supported continuous function. Prove that

$$
\lim _{s \downarrow 0} \int_{\mathbb{R}^{n}} \Phi(y, s) f(x-y, t-s) d y=f(x, t)
$$

