
MANDATORY ASSIGNMENT  
MAT4301 (PARTIAL DIFFERENTIAL 
EQUATIONS)—FALL 2021 

INFORMATION  

All mandatory assignments must be uploaded via Canvas. 

	 • The assignment must be submitted as a single PDF file.  
	 • Scanned pages must be clearly legible. 
	 • The submission must contain your name, course and assignment number.  

If these requirements are not met, the assignment will not be evaluated. Read the 
information about mandatory assignments carefully:[http://www.uio.no/english/studies/
examinations/compulsory-activities/mn-math-mandatory.html]. 

To have a passing grade you must have satisfactory answers to at least 50% of the 
questions and have attempted to solve all of them.  

PROBLEM 1 

a)  

Suppose  is a solution to  in  and satisfies 

	 , 

for some constants  and . Show that  must necessarily be constant. 

  

u ∈ C2(ℝn) Δu = 0 ℝn

|u(x) | ≤ K |x |a , x ∈ ℝn

K > 0 a ∈ (0,1) u
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b)  

Let  be a bounded and open subset of .  Consider a second order linear partial 
differential operator  defined by 

	 , 

where  are continuous functions on . Besides,  for all , so that the 

matrix  is symmetric. We say that  is uniformly elliptic if there is a number 

 such that  for all , for all . 

(i) Let  be a continuous function that is lower bounded by a number  for all . 

Show that  is uniformly elliptic. 

(ii) Suppose , and let  be continuous functions on . 
Show that 

 	  

is a uniformly elliptic partial differential operator. 

c)  

Let  be a connected, bounded and open subset of . Suppose  
satisfies the uniformly elliptic PDE 

	 ,  

where  is a vector of continuous functions. Establish the 
weak maximum principle, which asserts that 

	 . 

Ω ℝn

L

L[u] =
n

∑
i, j=1

ai, j(x)∂2
xi xj

u +
n

∑
i=1

bi(x) ⋅ ∂xi
u + c(x), u ∈ C2(Ω)

ai, j, bi, c Ω ai, j = aj,i i, j

a = {ai, j}
n

i, j=1
L

λ > 0 ∑
i, j

ai, j(x)ξiξj ≥ λ |ξ |2 ξ ∈ ℝn x ∈ Ω

γ(x) γ0 > 0 x
L[u] = γ(x)Δu

n = 2 α = α(x), β = β(x) Ω ⊂ ℝ2

L[u] = (1 + α2(x)) ∂2
x1x1

u + 2α(x)β(x)∂2
x1x2

u + (1 + β2(x)) ∂2
x2x2

u

Ω ℝn u ∈ C2(Ω) ∩ C(Ω)

L[u] := Δu + b ⋅ Du = 0 in Ω

b = b(x) = (b1(x), …, bn(x))

min
∂Ω

u ≤ u(x) ≤ max
∂Ω

u, x ∈ Ω



Hint: Show that , , cannot attain its maximum at an interior point 

of , where  and  is a suitably chosen constant. 

d)  

Prove that there exists at most one solution  of the boundary value 
problem 

	  

where ,   and  are 
given continuous functions. 

PROBLEM 2 

Let  be a connected, bounded and open subset of . A function  is called 
superharmonic (in )  if  in . Suppose  is superharmonic. Then it is known that 

	 , 

for any ball  (mean value formula for superharmonic functions). 

a)  

For a superharmonic function  prove that if  

	 , 

for some  (interior minimum), then .  

b)  

Suppose  satisfies the (nonlinear) PDE  in  and  on , 
where  is a given function.  

uε(x) := u + εv(x) ε > 0
Ω v(x) = ecx1 c > 0

u ∈ C2(Ω) ∩ C(Ω)

Δu + b ⋅ Du = f in Ω, u = g on ∂Ω,

b = b(x) = (b1(x), …, bn(x)) : Ω → ℝn f : Ω → ℝ g : ∂Ω → ℝ

Ω ℝn u ∈ C2(Ω)
Ω Δu ≤ 0 Ω u

u(x) ≥
1

|B(x, r) | ∫B(x,r)
u dy

B(x, r) ⊂ Ω

u

min
Ω

u = u(x0)

x0 ∈ Ω u ≡ constant

u ∈ C2(Ω) Δu + f (u) = 0 Ω u = 0 ∂Ω
f : ℝ → ℝ



(i) Suppose  is positive, . Prove that either  in  or . 

(ii) Suppose  . Show that  for all . Hint: Argue by 

contradiction, assuming that . Similarly, prove that . 

c)  

Let  solve the Poisson equation  

	 , 	 where .  

Suppose  as , sufficiently fast to justify integration by parts. Show that 

(2c—1)	 . 

Remark: From the Poisson equation, it follows immediately that the sum of the second order 
“diagonal” partial derivatives  is a square-integrable function, if the right-hand side  is. 

The result (2c—1) is surprisingly much stronger; it shows that each individual second order 
partial derivative   (not only the diagonal ones!) is a square-integrable function.   

PROBLEM 3 

a)  

Let  be a bounded open set in . Suppose that  satisfies  

the parabolic PDE 

	  

where  is a continuous function, . Let  be a 
positive convex function satisfying  

	  

f f ≥ 0 u > 0 Ω u ≡ 0

f (u) = u (1 − u2) u(x) ≤ 1 x ∈ Ω
M := max

Ω
u > 1 u ≥ − 1

u ∈ C2(ℝn)

−Δu = f  in ℝn f ∈ C(ℝn) ∩ L2(ℝn)

u → 0 |x | → ∞

uxi xj
L2(ℝn)

≤ ∥f ∥L2(ℝn), i, j = 1,…, n

uxi xi
f

uxi,xj

Ω ℝn u ∈ C2,1(Ω × (0,∞))

ut − Δu + c(x, t)u = 0 in Ω × (0,∞),

c = c(x, t) M := ∥c∥L∞ < ∞ S ∈ C2(ℝ)

zS′ (z) ≤ KS(z), z ∈ ℝ,



for some constant . Show that  satisfies the inequality   

(3a—1) 	 , 

where  is a constant. 

b)  

Let  be a bounded open set in , with outward unit normal vector . Consider the 
problem 

(3b–1)		  

where  are continuous functions. Prove that there exists a constant  such that  

(3b–2)		 , 

where  are two classical solutions of (3b—1) with initial functions , respectively. 
Explain why this stability result immediately implies the uniqueness of solutions. 

c)  

Let  be the fundamental solution of the heat equation. Let 

be a compactly supported continuous function. Prove that 

	 .

K > 0 S(u)

S(u)t − ΔS(u) ≤ CS(u) in Ω × (0,∞)

C = MK > 0

Ω ℝn ν

ut − Δu + c(x, t)u = f, x ∈ Ω, t > 0,
u(x,0) = u0(x), x ∈ Ω,
u(x, t) = h(x, t), x ∈ ∂Ω, t ≥ 0,

c, u0, h L > 0

u( ⋅ , t) − v( ⋅ , t)
L2(Ω)

≤ eLt u0 − v0 L2(Ω)

u, v u0, v0

Φ(x, t) =
1

(4π t) n
2

e− | x |2
4t f (x, t)

lim
s↓0 ∫ℝn

Φ(y, s)f (x − y, t − s) dy = f (x, t)
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