UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT4301 — Partial differential equations
Day of examination:	18 December 2023
Examination hours:	09:00-13:00
This problem set consists of 3 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note:

- You can get a total of 100 points. The point distribution is specified for each problem.
- All answers must be justified.

Problem 1 (25p)

Consider the heat equation

$$\begin{cases} u_t = \Delta u & \text{for } x \in \mathbb{R}^n, \ t > 0 \\ u(x,0) = g(x) & \text{for } x \in \mathbb{R}^n \end{cases}$$
(1)

for some continuous, bounded function $g \colon \mathbb{R}^n \to \mathbb{R}$.

1a (15p)

Write down the formula for the solution of (1), and use this formula to show that

$$\inf_{\mathbb{R}^n}g\leqslant u(x,t)\leqslant \sup_{\mathbb{R}^n}g\qquad \text{for all }x\in\mathbb{R}^n,\ t>0.$$

1b (10p)

How "smooth" (or "regular") can we expect the above solution u to be? Justify your claim.

Problem 2 (50p)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and connected. A function $u \in C^2(\Omega)$ is a subsolution of Laplace's equation if $\Delta u(x) \ge 0$ for all $x \in \Omega$.

Find an example of $\Omega \subset \mathbb{R}^3$ and two *different* subsolutions u, v of Laplace's equation on Ω satisfying u = v = 0 on $\partial \Omega$. You can for instance let $\Omega = B(0, 1)$.

2b (15p)

Let u be a subsolution of Laplace's equation on some domain Ω . For a fixed $x^0 \in \Omega$, define $\varphi(r) \coloneqq \int_{B(x^0,r)} u(y) \, dy$ (for r > 0 small enough so that $B(x^0,r) \subset \Omega$). Show that $\varphi'(r) \ge 0$ for all r.

Hint: You might need to use both change of variables, polar coordinates, and the divergence theorem.

2c (10p)

Use Problem 2b to prove the strong maximum principle: If $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is a subsolution of Laplace's equation, and there is a point $x^0 \in \Omega$ where $u(x^0) = M \coloneqq \max_{\overline{\Omega}} u$, then u is constant.

2d (15p)

Let $u_1, u_2 \in C^2(\Omega) \cap C(\overline{\Omega})$ be solutions to

$$\begin{cases} \Delta u_1 = f_1 & \text{in } \Omega \\ u_1 = g_1 & \text{on } \partial\Omega, \end{cases} \qquad \begin{cases} \Delta u_2 = f_2 & \text{in } \Omega \\ u_2 = g_2 & \text{on } \partial\Omega, \end{cases}$$
(2)

where $f_1, f_2 \in C(\Omega)$ and $g_1, g_2 \in C(\partial \Omega)$ satisfy $f_1 \leq f_2$ and $g_1 \geq g_2$. Use Problem 2c to show that $u_1 \geq u_2$.

Problem 3 (15p)

Consider the conservation law

$$\begin{cases} u_t + f(u)_x = 0\\ u(x,0) = g(x). \end{cases}$$
(3)

Use the method of characteristics to find a weak solution of (3) when $f(u) = u^2$ and

$$g(x) = \begin{cases} 0 & \text{if } x < 0\\ x & \text{if } 0 \le x \le 1\\ 1 & \text{if } 1 < x. \end{cases}$$

Sketch the characteristic curves in the x-t-plane.

Problem 4 (10p)

Consider the Hamilton–Jacobi equation

$$\begin{cases} u_t + \frac{(u_x)^2}{2} = 0 & \text{for } x \in \mathbb{R}, \ t > 0\\ u(x,0) = |x| & \text{for } x \in \mathbb{R}. \end{cases}$$
(4)

(Continued on page 3.)

Prove that this problem satisfies the conditions necessary to apply the Hopf–Lax formula. Then use this formula to deduce the following expression for the solution:

$$u(x,t) = \begin{cases} |x| - \frac{t}{2} & \text{if } |x| > t\\ \frac{x^2}{2t} & \text{if } |x| \le t. \end{cases}$$
(5)

THE END