UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad MAT4301 - Partial differential equations
Day of examination: 18 December 2023
Examination hours: 09:00-13:00
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note:

- You can get a total of 100 points. The point distribution is specified for each problem.
- All answers must be justified.

Problem 1 (25p)

Consider the heat equation

$$
\begin{cases}u_{t}=\Delta u & \text { for } x \in \mathbb{R}^{n}, t>0 \tag{1}\\ u(x, 0)=g(x) & \text { for } x \in \mathbb{R}^{n}\end{cases}
$$

for some continuous, bounded function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
1a (15p)
Write down the formula for the solution of (1), and use this formula to show that

$$
\inf _{\mathbb{R}^{n}} g \leqslant u(x, t) \leqslant \sup _{\mathbb{R}^{n}} g \quad \text { for all } x \in \mathbb{R}^{n}, t>0
$$

1 b (10p)
How "smooth" (or "regular") can we expect the above solution u to be? Justify your claim.

Problem 2 (50p)

Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded and connected. A function $u \in C^{2}(\Omega)$ is a subsolution of Laplace's equation if $\Delta u(x) \geqslant 0$ for all $x \in \Omega$.

2a (10p)

Find an example of $\Omega \subset \mathbb{R}^{3}$ and two different subsolutions u, v of Laplace's equation on Ω satisfying $u=v=0$ on $\partial \Omega$. You can for instance let $\Omega=B(0,1)$.

$2 b \quad(15 p)$

Let u be a subsolution of Laplace's equation on some domain Ω. For a fixed $x^{0} \in \Omega$, define $\varphi(r):=f_{B\left(x^{0}, r\right)} u(y) d y$ (for $r>0$ small enough so that $\left.B\left(x^{0}, r\right) \subset \Omega\right)$. Show that $\varphi^{\prime}(r) \geqslant 0$ for all r.
Hint: You might need to use both change of variables, polar coordinates, and the divergence theorem.

2c (10p)

Use Problem 2b to prove the strong maximum principle: If $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a subsolution of Laplace's equation, and there is a point $x^{0} \in \Omega$ where $u\left(x^{0}\right)=M:=\max _{\bar{\Omega}} u$, then u is constant.

2d (15p)

Let $u_{1}, u_{2} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be solutions to

$$
\left\{\begin{array} { l l }
{ \Delta u _ { 1 } = f _ { 1 } } & { \text { in } \Omega } \tag{2}\\
{ u _ { 1 } = g _ { 1 } } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
\Delta u_{2}=f_{2} & \text { in } \Omega \\
u_{2}=g_{2} & \text { on } \partial \Omega
\end{array}\right.\right.
$$

where $f_{1}, f_{2} \in C(\Omega)$ and $g_{1}, g_{2} \in C(\partial \Omega)$ satisfy $f_{1} \leqslant f_{2}$ and $g_{1} \geqslant g_{2}$. Use Problem 2c to show that $u_{1} \geqslant u_{2}$.

Problem 3 (15p)

Consider the conservation law

$$
\left\{\begin{array}{l}
u_{t}+f(u)_{x}=0 \tag{3}\\
u(x, 0)=g(x)
\end{array}\right.
$$

Use the method of characteristics to find a weak solution of (3) when $f(u)=u^{2}$ and

$$
g(x)= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0 \leqslant x \leqslant 1 \\ 1 & \text { if } 1<x\end{cases}
$$

Sketch the characteristic curves in the x - t-plane.

Problem 4 (10p)

Consider the Hamilton-Jacobi equation

$$
\begin{cases}u_{t}+\frac{\left(u_{x}\right)^{2}}{2}=0 & \text { for } x \in \mathbb{R}, t>0 \tag{4}\\ u(x, 0)=|x| & \text { for } x \in \mathbb{R}\end{cases}
$$

(Continued on page 3.)

Prove that this problem satisfies the conditions necessary to apply the HopfLax formula. Then use this formula to deduce the following expression for the solution:

$$
u(x, t)= \begin{cases}|x|-\frac{t}{2} & \text { if }|x|>t \tag{5}\\ \frac{x^{2}}{2 t} & \text { if }|x| \leqslant t .\end{cases}
$$

THE END

