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Preliminaries
We first mention some results you might need:

Definition. Let n;m 2 N and let � � Rn. We define the L2-norm of a function
vW�! Rm as the number

kvkL2.�/ D

�Z
�

jv.x/j2 dx

�1=2

:

The set L2.�;Rm/ is the set of all functions from � to Rm whose L2-norm is finite.
When m D 1 we write L2.�/ D L2.�;R/.

Theorem (Poincaré’s inequality). Let� � Rn be open and bounded. Then there exists
a constant C > 0 such that

kukL2.�/ ⩽ CkDukL2.�/ (1)

for every u 2 C 1.�/ \ C.�/ satisfying u
ˇ̌
@�
� 0.

Theorem (Gronwall’s inequality). If ˛ 2 C 1.Œ0;1// satisfies

˛0.t/ ⩽ b.t/˛.t/ 8 t > 0 (2)

for some b 2 C.Œ0;1// then

˛.t/ ⩽ ˛.0/eB.t/
8 t ⩾ 0; (3)

where B.t/ D
R t

0
b.s/ ds.

Problems
1. (Long-term behavior of the heat equation) Let � � Rn be an open, bounded

domain. Consider the initial-boundary value problem8̂<̂
:
ut D �uC f in � � .0;1/
u D g on @� � Œ0;1/
u D h on � � ft D 0g

(4)

where the source term f , boundary data g and initial data h are given and f 2
C.� � Œ0;1//, g 2 C.@� � Œ0;1// and h 2 C.�/ (where � is the closure of
�).

(a) Let u; v 2 C 2
1 .�� .0;1//\C.�� Œ0;1// both satisfy (4) with the same

functions f and g, but with different initial data h1 and h2, respectively.
Prove the energy estimate

d

dt
EŒu � v�.t/ D �

Z
�

jD.u � v/.x; t/j2 dx 8 t > 0 (5)

where EŒw�.t/ D 1
2

R
�
jw.x; t/j2 dx.
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(b) Prove that there is a constant C > 0 such that

EŒu � v�.t/ ⩽
1

2
kh1 � h2k

2
L2.�/

e�C t
8 t ⩾ 0: (6)

Hint. Use (5) and the Poincaré and Gronwall inequalities.

(c) Conclude that the difference between u and v (in an appropriate norm)
converges to 0 as t !1, no matter how h1; h2 were chosen.

Remark. We can not conclude from the above that u and v converge to
some common limit as t ! 1, only that they “become more and more
similar”.

(d) Assume now that f and g are constant in time, i.e. f .x; t/ D Nf .x/ for all
x 2 �, t > 0 and g.x; t/ D Ng.x/ for all x 2 @�, t > 0, where Nf 2 C.�/
and Ng 2 C.@�/. Let u solve (4) as before, and let Nu 2 C 2.�/ \ C.�/

solve the Poisson problem(
�� Nu D Nf in �
Nu D Ng on @�:

(7)

Show that u.�; t /! Nu inL2.�/ as t !1. How fast does this convergence
take place?

Solution:

(a) Letw D u�v; thenw solves (4) with data f D 0, g D 0, and h D h1�h2.
We get

d

dt
EŒw�.t/ D

Z
�

wwt dx D

Z
�

w�w dx

D

Z
@�

wDw � � dS.x/ �

Z
�

Dw �Dw dx:

The fact that w D 0 on @� now implies that the first term vanishes, leading
to (5).

(b) By Poincaré’s inequality, there is some C > 0 such thatZ
�

jw.x/j2 dx ⩽ C

Z
�

jDw.x/j2 dx

for all w 2 C 1.�/\C.�/ satisfying w D 0 on @�. Hence, the above also
holds for w.x/ D .u � v/.x; t/ for any t ⩾ 0. We conclude from (5) that

d

dt
EŒu � v�.t/ ⩽ �

1

C

Z
�

j.u � v/.x; t/j2 dx D �
2

C
EŒu � v�.t/:

Now let ˛.t/ D EŒu � v�.t/, so that ˛0.t/ ⩽ � 2
C
˛.t/. From Gronwall we

get that
˛.t/ ⩽ ˛.0/e�2t=C for all t ⩾ 0:

Observing that ˛.0/ D EŒu � v�.0/ D 1
2
kh1 � h2k

2
L2.�/

, we arrive at (6).
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(c) From (b) we can conclude that .u � v/.�; t /! 0 as t !1 in L2.�/.

(d) Let v.x; t/ D Nu.x/. Then v solves (4) with h D Nu, so by (c) we find that

EŒu � v�.t/ D
1

2
ku.�; t / � Nuk2

L2 ⩽
1

2
kh1 � Nuk

2
L2e
�C t :

Hence, the L2 difference between u.�; t / and Nu goes to zero exponentially
fast as t !1.

2. (Maximum principles for the wave equation) Consider the wave equation8̂<̂
:
ut t D c

2�u for x 2 Rn; t > 0

u.x; 0/ D g.x/ for x 2 Rn

ut .x; 0/ D h.x/ for x 2 Rn

(8)

for some constant c > 0 and given functions g; hWRn ! R.

(a) Write down solution formulas for (8) in n D 1, 2 and 3 dimensions.
(b) We know that the (homogeneous) heat equation satisfies the maximum

principle
u.x; t/ ⩽ max

y2Rn
u.y; 0/ 8 x 2 Rn; t > 0 (9)

(and likewise for a lower bound). In this problem you may assume n D 1.
(i) Show that we should not expect that (9) holds for general initial data

for the wave equation.
(ii) Give a sufficient condition on the initial data that ensures that (9) holds

for the wave equation.
(c) From Problem (b) we know that a maximum principle of the form

u ⩽ max
Rn

g

is not true in general, but there is a maximum principle that also takes into
account the values of h. In the cases n D 1; 3, state and prove an estimate
on the maximum value that u.x; t/ can take. (This is also possible for
n D 2, but it requires a longer computation.)

Solution:

(a) We note that if v.x; t/ D u.x; t=c/ then vt t D �v, v.x; 0/ D g.x/ and
vt .x; 0/ D h.x/=c. We can therefore use the solution formulae that we
know for this “standard” wave equation:

n D 1:

u.x; t/ D v.x; ct/ D
1

2

�
g.x�ct/Cg.xCct/

�
C
1

2c

Z xCct

x�ct

h.y/ dy:

n D 2:

u.x; t/ D
1

2
�

Z
B.x;ct/

ctg.y/C ct2h.y/C ctDg.y/ � .y � x/

.c2t2 � jy � xj2/1=2
dy:
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n D 3:

u.x; t/ D �

Z
@B.x;ct/

th.y/C g.y/CDg.y/ � .y � x/ dS.y/:

(b) Let us assume n D 1. Let g � 1 and let h be any positive function. Then
u.x; 0/ � 1, but the solution is

u.x; t/ D 1C
1

2c

Z xCct

x�ct

h.y/ dy > 1:

Hence, (9) is violated. If, on the other hand, h � 0 then

u.x; t/ D
1

2

�
g.x � ct/C g.x C ct/

�
⩽ max

y
g.y/ D max

y
u.y; 0/:

(c) Let us write kgk1 D maxy2Rn jg.y/j. Using the solution formulas, we
can deduce the following upper bounds:

n D 1:

u.x; t/ ⩽ kgk1 C
1

2c

Z xCct

x�ct

khk1 dz

D kgk1 C tkhk1:

n D 3: We estimate

u.x; t/ ⩽ tkhk1 C kgk1 C ctkDgk1;

where we have used the fact that jy � xj D ct for y 2 @B.x; ct/.

It should be noted that all of the above estimates can be sharpened; for in-
stance, in the case n D 1we could replace khk1 by maxy2Œx�ct;xCct� h.y/.

3. (The method of characteristics) Use the method of characteristics to solve the fol-
lowing problems (or, if it’s not possible, explain why). In the problems where the
domain � is not given, you should choose a domain � where you can uniquely
determine the solution.

(a) (
x1ux1

C x2ux2
D 2u;

u.x1; 1/ D g.x1/ for x1 2 R

(b) (
ut C .1 � t /uy D �u for y 2 R; t > 0
u.y; 0/ D g.y/ for y 2 R

(c) (
ut C auy D 0 for y 2 R; t > 0
u.y; 0/ D g.y/ for y 2 R
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where aWR! R is the function

a.y/ D

8̂<̂
:
0 for y < 0
y for 0 ⩽ y ⩽ 1

1 for 1 < y:

(d) (
x1ux1

C 2x2ux2
C ux3

D 3u

u.x1; x2; 0/ D g.x1; x2/ for x1; x2 2 R

(e) (
uux1

C ux2
D 1

u.x1; x1/ D
1
2
x1 for x1 2 R

Hint. In all of the above problems, first determine F , compute DpF , Fz and
DxF , and write down the characteristic equations8̂̂̂<̂

ˆ̂:
Px D DpF.p; z; x/

Pz D p �DpF.p; z; x/

Pp D �pFz.p; z; x/ �Dp.p; z; x/

F.p; z; x/ D 0:

Then solve these ODEs (usually just the equations for x; z, if possible) in terms
of the initial data .p0; z0; x0/. Finally, given an arbitrary point x, find x0 2 �

and s 2 R such that x.s/ D x; then u.x/ D u.x.s// D z.s/. Since the method
of characteristics only provides a candidate solution, you should check that your
function actually solves the problem.

Hint. It’s always a good idea to draw some of the characteristic curves.

Solution:

(a) We have F.p; z; x/ D x1p1 C x2p2 � 2z D x � p � 2z, so

DpF.p; z; x/ D x;

Fz.p; z; x/ D �2;

DxF.p; z; x/ D p:

Hence, the characteristic equations are

Px D x; Pz D x � p D 2z; Pp D �2p � x D �3p:

Hence, x.s/ D x0es , z.s/ D z0e2s and p.s/ D p0e�3s . We have x0 2 �

if and only if x0
2 D 1, whence x2.s/ > 0 for all s 2 R. Hence, we can

only solve the equation for x 2 R � RC. In order for � � @�, let us set
� WD R � .1;1/. For an arbitrary x 2 U we then have x.s/ D x if and
only if es D x2 and x0

1e
s D x1, whence s D log x2 and x0

1 D x1=x2.
Therefore,

u.x/ D u.x.s// D z.s/ D z0e2s
D g.x0

1/.e
s/2 D g.x1=x2/.x2/

2:
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A quick check will verify that this function satisfies the given problem. (We
note also that the solution formula makes sense, and satisfies the PDE, for
all x2 > 0.)

(b) We have x D .y; t/, � D R � RC, � D R � f0g, and F.p; z; x/ D
p2 C .1 � x2/p1 C z. We have

DpF.p; z; x/ D

�
1 � x2

1

�
;

Fz.p; z; x/ D 1;

DxF.p; z; x/ D

�
0

�p1

�
:

Thus, the characteristic equation is F.p; z; x/ D 0 and

Px D

�
1 � x2

1

�
;

Pz D p1.1 � x2/C p2 D F.p; z; x/ � z D �z;

Pp D �p �

�
0

�p1

�
D

�
�p1

�p1 � p2

�
:

The solution for z is clearly z.s/ D z0e�s . For x we have Pt D 1 so
t .s/ D t0 C s, and since t D 0 on � we get t0 D 0, whence t .s/ D s. Last,
Py D 1 � s, so y.s/ D s � s2=2C y0: Hence,

z.s/ D u.y.s/; t.s// D u.s � s2=2C y0; s/ D z
0e�s

D g.y0/e�s :

In order to find the solution at an arbitrary point .y; t/, set t D s and y D
y.s/ D s � s2=2C y0, so y0 D y � s C s

2=2. Then

u.y; t/ D g
�
y � t C t2=2

�
e�t :

(Note that we did not need the equation for p in order to find u.)

(c) Here we have

DpF.p; z; x/ D

�
a.y/

1

�
;

Fz.p; z; x/ D 0;

DxF.p; z; x/ D

�
a0.y/p1

0

�
so the characteristic equations are now

Px D

�
a.y/

1

�
;

Pz D p2 C a.y/p1 D F.p; z; x/ D 0;

Pp D �

�
a0.y/p1

0

�
:
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We get t .s/ D s as before, and z � z0. We need to solve the equation
Py D a.y/: If y0 ⩽ 0 then y � y0. If 0 < y0 < 1 then Py D y for small s,
so y.s/ D y0es , until the time s� when y.s�/ D 1, at which point Py D 1,
whence y.s/ D 1C s � s�. If y0 ⩾ 1 then y.s/ D y0 C s. Solving for s�,
we get s� D � logy0, and therefore

y.s/ D

8̂̂̂<̂
ˆ̂:
y0 if y0 ⩽ 0;

y0es if 0 < y0 < 1 and s < � logy0

1C s C logy0 if 0 < y0 < 1 and s ⩾ � logy0

y0 C s if y0 ⩾ 1:

The four domains (labelled A, B, C, D) in the above formula are pictured
below:

We know then that

u.y.s/; s/ D z.s/ D z0
D g.y0/:

Thus, to find the solution at an arbitrary .y; s/ 2 �, we need to find the
corresponding point y0. If .y; s/ 2 A, i.e. y ⩽ 0, then y0 D y. If .y; s/ 2
B , i.e. 0 < y < 1, then y D y.s/ D y0es , so y0 D ye�s . If .y; s/ 2 C ,
i.e. y ⩾ 1 and s ⩾ y, then y D y.s/ D 1C s C logy0, so y0 D ey�1�s .
Last, if .y; s/ 2 D, i.e. y > 1C s, then y D y.s/ D y0C s, so y0 D y� s.
Putting this together, we find

u.y; t/ D

8̂̂̂<̂
ˆ̂:
g.y/ if y ⩽ 0

g.ye�s/ if 0 < y < 1
g.ey�1�s/ if 1 ⩽ y ⩽ s

g.y � s/ if y > 1C s:

Again, note that we did not use the equation for p.
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(d) We have � D R�R� f0g and F.p; z; x/ D x1p1C 2x2p2C p3 � 3z, so

DpF.p; z; x/ D

0@ x1

2x2

1

1A ;
Fz.p; z; x/ D �3;

DxF.p; z; x/ D

0@ p1

2p2

0

1A :
Therefore, the characteristic equations are

Px D

0@ x1

2x2

1

1A ;
Pz D p1x1 C 2p2x2 C p3 D 3z;

Pp D

0@ 3x1 � p1

6x2 � 2p2

3

1A :
The solutions to the first two equations are x1.s/ D x0

1e
s , x2.s/ D x0

2e
2s ,

x3.s/ D x0
3 C s, z.s/ D z0e3s . Since x0 2 � if and only if x0

3 D 0 we
get x3.s/ D s. Consequently, we can take either � D R � R � RC or
� D R � R � R�. Let us choose the former, i.e. s ⩾ 0. If we choose an
arbitrary x 2 � then s D x3, x1 D x

0
1e

s so x0
1 D e

�x3x1, and x2 D x
0
2e

2s ,
so x0

2 D x2e
�2x3 . We conclude that

u.x/ D z.s/ D z0e3s
D g

�
x0

1 ; x
0
2

�
e3s
D g

�
x1e
�x3 ; x2e

�2x3
�
e3x3 :

(e) We have � D f.x1; x1/ W x1 2 Rg and F.p; z; x/ D zp1 C p2 � 1, so

DpF.p; z; x/ D

�
z

1

�
;

Fz.p; z; x/ D p1;

DxF.p; z; x/ D 0;

so the characteristic equations are

Px D

�
z

1

�
;

Pz D p1z C p2 D 1;

Pp D �

�
p2

1 C z

p1p2 C 1

�
:

Then z.s/ D z0 C s, so Px1 D z
0 C s and Px2 D 1, whence

x1.s/ D z
0s C 1

2
s2
C x0

1 and x2.s/ D s C x
0
2 D s C x

0
1
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(since x0
1 D x0

2 for x0 2 �). Insert the boundary condition z0 D
1
2
x0

1 to
get

x1.s/ D
1
2
s2
C

1
2
x0

1s C x
0
1 :

If x 2 R2 is arbitrary then we would like to find x0 2 R2 and s 2 R such
that x2 D s C x

0
1 , i.e. x0

1 D x2 � s, and

x1 D
1
2
s2
C

1
2
x0

1s C x
0
1 D

1
2
x2s C x2 � s

Hence,
s D

x1 � x2

1
2
x2 � 1

:

Thus, we can insert into u.x/ D z.s/ D z0 C s D 1
2
x0

1 C s D
1
2
x2 C

1
2
s

and get
u.x/ D 1

2
x2 C

1
2

x1 � x2

1
2
x2 � 1

D
1
2
x2 C

x1 � x2

x2 � 2
:

It is now straightforward to check that this function solves the problem, as
long as x2 ¤ 2. Thus, if we set, say, � D fx 2 R2 W 2 < x1 < x2g, then
the above function solves the problem in U .

The figure below shows a selection of characteristics drawn in the vicinity
of the diagonal � (in black):

It is clear that something strange happens at the boundary point .2; 2/: All
characteristics join into one point! Thus, there is no unique way of moving
along a characteristic starting at this point. Let us investigate what goes
wrong at this point. The admissibility conditions state that z0 D g.x0/ D
1
2
x0

1 and

0 D F.p0; z0; x0/ D z0p0
1 C p

0
2 � 1 D

1
2
x0

1p
0
1p

0
2 � 1:

The remaining admissibility criterium is that p0 � � D � �Dg.x0/, where �
is any tangent vector of � at x0. If, say, � D .1; 1/> then � �Dg.x0/ � 1

2
,
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and p0 �� D p0
1Cp

0
2 . Thus, p0

2 D
1
2
�p0

1 , which inserted into the equation
for F yields

0 D 1
2
x0

1p
0
1 C

1
2
� p0

1 � 1 , p0
1 D

1

x0
1 � 2

:

This clearly breaks down at x0 D .2; 2/, so the admissibility condition is
not satisfied at this point, and the theory of characteristics breaks down.
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