Problem set 1 MAT4301

Ulrik Skre Fjordholm

August 23, 2023

Problems marked with * can be skipped if you are short on time.

Vector calculus

- 1. Compute the gradient Du of the following functions:
 - (a) $u(x) = \sin(x_1x_2^2 x_3)$ for $x = (x_1, x_2, x_3) \in \mathbb{R}^3$
 - (b) $u(x) = |x|^2$ for $x \in \mathbb{R}^n$
 - (c) u(x) = |x| for $x \in \mathbb{R}^n$

(*Here and elsewhere*, $|x| = \sqrt{x_1^2 + \dots + x_n^2}$ denotes the Euclidean norm of x.)

2. Write out the expression

$$\sum_{|\alpha|=2} \alpha! x^{\alpha}$$

where $x = (x_1, x_2)$ is some point in \mathbb{R}^2 .

(Here and elsewhere we use the convention that α denotes a multiindex, so the sum runs over all pairs of nonnegative integers $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}_0^2$ whose sum $|\alpha| = \alpha_1 + \alpha_2$ equals 2.)

- **3.** Compute the partial derivative $D^{\alpha}u$ for all multiindices α of length $|\alpha| = 1$ and $|\alpha| = 2$, for the functions $u(x) = |x|^2$ and u(x) = |x| (where $x \in \mathbb{R}^n$).
- **4.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a given function, fix a point $x \in \mathbb{R}^2$ and define g(t) = f(tx). Write out g'(t) and g''(t) in terms of partial derivatives of f. Use multiindex notation.
- **5.** Solve problems 3, 4, 5 in Section 1.5 in Evans.

Hint for 1.5.3: Use induction on *n*, not *k*. Recall the binomial theorem, $(a + b)^m = \sum_{r=0}^m {m \choose r} a^r b^{m-r}$, where ${m \choose r} = \frac{m!}{r!(m-r)!}$ are the binomial coefficients. *Hint for 1.5.4:* Use induction on *n*. Recall Leibniz' formula in one dimension: $\partial_{x_n}^k(fg) = \sum_{r=0}^k {k \choose r} \partial_{x_n}^r f \partial_{x_n}^{k-r} g$ for functions $f, g \in C^k(\mathbb{R}^n)$. *Hint for 1.5.5:* As mentioned in the exercise, define g(t) = f(tx) for $t \in \mathbb{R}$. Write down the *k*th order Taylor expansion for g(1) (including error term), expanded around t = 0. Show that the *m*th derivative of *g* can be written as $g^{(m)}(t) = \sum_{|\alpha|=m} {m \choose \alpha} x^\alpha D^\alpha f(tx)$. To this end:

• Show first that

$$g^{(m)}(t) = \sum_{i_1=1}^n \cdots \sum_{i_m=1}^n x_{i_1} \cdots x_{i_k} \, \partial_{x_{i_1}} \cdots \partial_{x_{i_m}} f(tx).$$

• Next, recall the fact that for a multiindex α of length $|\alpha| = m$, the number $\binom{m}{\alpha} = \frac{m!}{\alpha_1! \cdots \alpha_n!}$ is the number of ways to extract *m* balls of *n* different colors from a bag, picking α_1 of the first color, α_2 of the second color, and so on. Use this fact to rewrite the above expression for $g^{(m)}(t)$ in multiindex notation.

Integration

1. Compute the integral

$$\int_{B(0,1)} \operatorname{div} f(x) \, dx$$

where B(0, 1) is the unit ball in \mathbb{R}^3 and $f(x) = |x|^2 x$. What do you get when B(0, 1) is the unit ball (or *disc*) in \mathbb{R}^2 ?

Hint: Use the divergence theorem (Theorem 1(ii) in §C.2).

- **2.** Use the Gauss–Green theorem (Theorem 1(i) in §C.2) to prove all of the other identities in §C.2.
- **3.** A function $u: \mathbb{R}^n \to \mathbb{R}$ is *locally integrable* if for every bounded set $K \subset \mathbb{R}^n$, the integral

$$\int_{K} |u(x)| \, dx$$

is finite.

- (a) Show that $u(x) = \log |x|$ for $x \in \mathbb{R}^n$ is locally integrable, for any number of dimensions $n \in \mathbb{N}$.
- (b) Let $u(x) = |x|^p$ for $x \in \mathbb{R}^n$ and let $p \in \mathbb{R}$ be a given number. For what values of p is this function locally integrable?

Hint: If *u* is bounded on *K* (i.e., $\exists C > 0$ such that $|u(x)| \leq C$ for all $x \in K$) then *u* is integrable over *K*, so it suffices to concentrate on bounded domains *K* where *u* is unbounded.

PDEs

1. Find a function $u: \mathbb{R}^3 \to \mathbb{R}$ satisfying the PDE

$$-\Delta u = 1$$
 in \mathbb{R}^3 .

Hint: Try the function $v(x) = |x|^2$ first.

- **2.** Solve the previous problem with \mathbb{R}^3 replaced by \mathbb{R}^n , for any $n \in \mathbb{N}$.
- **3.** Solve problem 1.5.1 in Evans.