Problem set 1 — Solutions
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Problems marked with * can be skipped if you are short on time.

Vector calculus

1. Compute the gradient Du of the following functions:

(@) u(x) = sin(x1x3 — x3) for x = (x1, x2,x3) € R?
() u(x) = |x|? for x € R"
(¢) u(x) = |x| forx e R"

(Here and elsewhere, |x| = \/x? + -+ + x2 denotes the Euclidean norm of x.)

2. Write out the expression
Z alx?®

loe|=2
where x = (x1, x,) is some point in R2.
(Here and elsewhere we use the convention that a denotes a multiindex, so the sum runs over

all pairs of nonnegative integers o« = (1, Q2) € N% whose sum || = a1 + o equals 2.)

3. Compute the partial derivative D%u for all multiindices « of length || = 1 and |«| = 2, for
the functions u(x) = |x|? and u(x) = |x| (where x € R").

4. Let f:R? — R be a given function, fix a point x € R? and define g(¢) = f(zx). Write out
g'(t) and g”(¢) in terms of partial derivatives of f. Use multiindex notation.
5. Solve problems 3, 4, 5 in Section 1.5 in Evans.

Hint for 1.5.3: Use induction on n, not k. Recall the binomial theorem,
(a+by" =37y (7)a"b™ ", where (7) = #lr), are the binomial coefficients.
Hint for 1.5.4: Use induction on n. Recall Leibniz’ formula in one dimension:
k k — .
&K (fg) =y (5)0, f0k-Tg for functions f, g € CK(RM).
Hint for 1.5.5: As mentioned in the exercise, define g(¢) = f(¢x) for t € R. Write down the kth

order Taylor expansion for g(1) (including error term), expanded around t = 0. Show that the mth
derivative of g can be written as g™ (1) = 2 lal=m ()x*D¥ f(tx). To this end:

e Show first that

n n
g('")(t) = Z Z Xi, "'Xikaxn c By, f(EX).

i1=1 im=1



e Next, recall the fact that for a multiindex « of length |o| = m, the number (Z’) =& ,’.'.’Ln, is the
number of ways to extract m balls of n different colors from a bag, picking o1 of the first color,
ay of the second color, and so on. Use this fact to rewrite the above expression for g(m)(t) in

multiindex notation.

Solution:
1. (a) We have u,, (x) = x% cos(xlxg — X3), Ux,(X) = 2x1x2 cos(xlxg — x3) and
Uy, (X) = —cos(x1X2 — X3), SO
X3
Du(x) = cos(xlxg —x3) | 2x1x2
-1

(b) We have uy, (x) = 2x;, so Du(x) = 2x.

(c) We have uy, (x) = —————2x; = %, s0 Du(x) = 5.

Xi
2‘/x%+"~+x%

2. The two-dimensional multiindices of length |¢| = 2 are (2, 0), (1, 1) and (0, 2). There-

fore,
D alx® = 2,0 + (1, DIx D + 0,202 = 2x7 + x1x, + 243,
|a|=2
3. The partial derivatives D% when |¢| = 1 are the components of the gradient of the

function, which we already computed.

u(x) = |x|> We have Uy, (x) = 2x;. If j # i then uy,x; (x) = 0, while uy, ; (x) = 2.
Hence, we can write D*u(x) = 284, ,, Where § is the Kronecker delta function:

1oiti =,
5,-,,-:{ /

0 ifi #j.
u(x) = |x| We have uy, (x) = I)jc_ll We have (ﬁ)xj = _#bclxj = —% Hence, if
J # i then uy,y; (x) = —T;Tg On the other hand, for i = j we get uy, ; (x) =
2

I)lc_l - fc_lP Summarizing, we have for any « of length || = 2

Dau(x) — 80‘1,012 _ Yoy Yoy
|x| |x|?

4. We have
g(t) = fr, @X)x1 + fr,(tx)x2 = x1 DTO f(2x) + x2 DOV f(1x)

and

g//(t) = x%fxlxl (tx) + 2x1x2fx1x2(tx) + x%fX2X2(ZX)
= x2D@0 f(1x) + 2x,x, DY f(1x) + x2DO? f(1x).




Integration

1. Compute the integral

/ div f(x) dx
B(0,1)

where B(0, 1) is the unit ball in R3 and f(x) = |x|?x. What do you get when B(0, 1) is the
unit ball (or disc) in R??
Hint: Use the divergence theorem (Theorem 1(ii) in §C.2).

2. Use the Gauss—Green theorem (Theorem 1(i) in §C.2) to prove all of the other identities in
§C.2.

3. A function u: R" — R is locally integrable if for every bounded set K C R”, the integral

/ |u(x)| dx
K

is finite.
(a) Show that u(x) = log|x| for x € R” is locally integrable, for any number of
dimensions n € N.
(b) Letu(x) = |x|? for x € R"” and let p € R be a given number. For what values of p is
this function locally integrable?

Hint: If u is bounded on K (i.e., 3 C > 0 such that |u(x)| < C for all x € K) then u is
integrable over K, so it suffices to concentrate on bounded domains K where u is unbounded.

Solution:

1. We use the divergence theorem:
I = [ div f(x)dx = / f(x)v(x)dS(x) = / lx|2x-x dS(x) = [dB(0,|1)]
B(0,1) 3B(0,1) 3B(0,1)

where we have used the fact that v(x) = x on the unit sphere. We can look up the area
|0B(0, 1)| and find the answer I = 4.

In R? we get instead I = |dB(0, 1)| = 27, the length of the unit circle.

2. We assume that the identity [, ux, dx = [;;, uv’ dS holds.

Divergence theorem:

n n
divudx = /ui_dx: / uividS(x)=/ u-vdS.
/U ; v Z b1 1

i=1

Integration by parts:

/ Uy, vdx =/(uv)xl. — UVy; dx =/ uvv’ dS—/ Uvy; dx,
U U U U

where we in the first step have used the product rule uy; v = (UV)x; — UVy; .




Theorem 3(i):

n n
Audx = /(”xi)xi dx = / uxl.vi dS:/ Du-vdsS.
/, 2 J, 2 Jy -

i=1

Theorem 3(ii):

n n
LDM-Dde:Z;/quivxi dx:Z/U(”xiv)xi_”xl-xl-de

i=1

n n
:Z/ uxivvidS—Z/ Uy, x; Vdx
i=1Y9U i=17U

=/ 8—uvdS—f vAu dx
au v U

where we denote g—'}f =v-Du.

Theorem 3(iii):

n
/ UAv —vAudx = Z/ UVx;x; — Vllx,x; AX
U U

i=1

n
= Z/ (uvxi)xi - uxi Uxi - (qui)xi + Uxi ux,' dx
U

i=1

n
= Z/ uvy, V' — vy, vt dS
U

i=1

3. (a) We only need to check that u is integrable near its singularity at x = 0. Let, say,
K = B(0, 1); then

1 1
/|log|x||dx=/ / —logrdS(x)drz—/ |0B(0,r)|logrdr
K 0 JaB(o,r) 0
1
= —|dB(0, 1)|/ r"logrdr,
0

which is finite for any » > 1. Hence, u is locally integrable. Here, we have first
converted to polar coordinates and then used the fact that the (hyper-)area |0B(0, )|
of the (hyper-)sphere dB(0, r) equals ¥~ |dB(0, 1)|.

(b) If p > 0 then the function is locally bounded (i.e., bounded on every bounded set),
so it’s locally bounded. If p < O then u is bounded away from x = 0, so we only




need to check integrability near 0. If, say K = B(0, 1) then

1 1
/u(x)dx=/ / r? dS(x)dr =/ r?|0B(0, r)| dr
K 0 JoaB(0,r) 0

1 1
= [0B(0, 1)|/ rPr"~tdr = |9B(0, 1)|/ rPtr=lar
0 0
1
= [dB(0, )| ——,
p+n
where the last step is only true if p +n — 1 > —1, thatis, p > —n; otherwise, the

integral is infinite.
To conclude, u(x) = |x|? is locally integrable if and only if p > —n.

PDEs

1. Find a function u: R® — R satisfying the PDE
—Au =1 in R3.
Hint: Try the function v(x) = |x|? first.
2. Solve the previous problem with R3 replaced by R”, for any n € N.

3. Solve problem 1.5.1 in Evans.

Solution:

1. If v(x) = |x|? then

3
32
Av(x) = Zﬁ(xf+x§+x§) =24+2+2=6.
i=1 i
Hence, the function u(x) = —% |x|? solves the PDE.
2. We see that A|x|? = 2n, so the solution for general 7 is u(x) = —3-|x|2.

3. Section 1.2.1:

a.l Laplace Linear, second-order

a.2 Helmholtz Linear, second-order

a.3 Linear transport Linear, first-order
a.4 Liouville Linear, first-order

a.5 Heat Linear, second-order

a.6 Schrodinger Linear, second-order
a.7 Kolmogorov Linear, second-order
a.8 Fokker-Planck Linear, second-order

a.9 Wave Linear, second-order




a.10 Klein—Gordon Linear, second-order

a.11 Telegraph Linear, second-order

a.12 General wave Linear, second-order

a.13 Airy Linear, third-order

a.14 Beam Linear, fourth-order

b.1 Eikonal Nonlinear, first-order

b.2 Nonlinear Poisson Semilinear, second-order
b.3 p-Laplacian Quasilinear, second-order

b.4 Minimal surface Quasilinear, second-order
b.5 Monge-Ampere Nonlinear, second-order

b.6 Hamilton-Jacobi Nonlinear, first-order (provided H is nonlinear in its first argu-
ment — otherwise the equation linear)

b.7 Scalar conservation law Quasilinear, first-order (provided f is nonlinear — other-
wise the equation is linear)

b.8 Inviscid Burgers equation Quasilinear, first-order

b.9 Scalar reaction-diffusion Semilinear, second-order

b.10 Porous medium Quasilinear, second-order (unless y = 1, in which case it’s linear)
b.11 Nonlinear wave equation Semilinear, second-order

b.12 KdV Semilinear, third-order

b.13 Nonlinear Schrodinger Semilinear, second-order
Section 1.2.2:

a.l Linear elasticity, equilibrium Linear, second-order

a.2 Linear elasticity Linear, second-order

a.3 Maxwell Linear, first-order

b.1 System of conservation laws Nonlinear, first-order (unless F is linear)
b.2 Reaction-diffusion system Semilinear, second-order

b.3 Euler Quasilinear, first-order

b.4 Navier-Stokes Quasilinear, second-order




