Problem set 1 – Solutions MAT4301

Ulrik Skre Fjordholm

September 6, 2023

Problems marked with * can be skipped if you are short on time.

Vector calculus

- 1. Compute the gradient Du of the following functions:
 - (a) $u(x) = \sin(x_1x_2^2 x_3)$ for $x = (x_1, x_2, x_3) \in \mathbb{R}^3$
 - (b) $u(x) = |x|^2$ for $x \in \mathbb{R}^n$
 - (c) u(x) = |x| for $x \in \mathbb{R}^n$

(*Here and elsewhere*, $|x| = \sqrt{x_1^2 + \dots + x_n^2}$ denotes the Euclidean norm of x.)

2. Write out the expression

$$\sum_{|\alpha|=2} \alpha! x^{\alpha}$$

where $x = (x_1, x_2)$ is some point in \mathbb{R}^2 .

(Here and elsewhere we use the convention that α denotes a multiindex, so the sum runs over all pairs of nonnegative integers $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}_0^2$ whose sum $|\alpha| = \alpha_1 + \alpha_2$ equals 2.)

- **3.** Compute the partial derivative $D^{\alpha}u$ for all multiindices α of length $|\alpha| = 1$ and $|\alpha| = 2$, for the functions $u(x) = |x|^2$ and u(x) = |x| (where $x \in \mathbb{R}^n$).
- **4.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a given function, fix a point $x \in \mathbb{R}^2$ and define g(t) = f(tx). Write out g'(t) and g''(t) in terms of partial derivatives of f. Use multiindex notation.
- **5.** Solve problems 3, 4, 5 in Section 1.5 in Evans.

Hint for 1.5.3: Use induction on *n*, not *k*. Recall the binomial theorem, $(a + b)^m = \sum_{r=0}^m {m \choose r} a^r b^{m-r}$, where ${m \choose r} = \frac{m!}{r!(m-r)!}$ are the binomial coefficients. *Hint for 1.5.4:* Use induction on *n*. Recall Leibniz' formula in one dimension: $\partial_{x_n}^k(fg) = \sum_{r=0}^k {k \choose r} \partial_{x_n}^r f \partial_{x_n}^{k-r} g$ for functions $f, g \in C^k(\mathbb{R}^n)$. *Hint for 1.5.5:* As mentioned in the exercise, define g(t) = f(tx) for $t \in \mathbb{R}$. Write down the *k*th order Taylor expansion for g(1) (including error term), expanded around t = 0. Show that the *m*th derivative of *g* can be written as $g^{(m)}(t) = \sum_{|\alpha|=m} {m \choose \alpha} x^\alpha D^\alpha f(tx)$. To this end:

• Show first that

$$g^{(m)}(t) = \sum_{i_1=1}^{n} \cdots \sum_{i_m=1}^{n} x_{i_1} \cdots x_{i_k} \partial_{x_{i_1}} \cdots \partial_{x_{i_m}} f(tx).$$

• Next, recall the fact that for a multiindex α of length $|\alpha| = m$, the number $\binom{m}{\alpha} = \frac{m!}{\alpha_1! \cdots \alpha_n!}$ is the number of ways to extract *m* balls of *n* different colors from a bag, picking α_1 of the first color, α_2 of the second color, and so on. Use this fact to rewrite the above expression for $g^{(m)}(t)$ in multiindex notation.

Solution:

1. (a) We have $u_{x_1}(x) = x_2^2 \cos(x_1 x_2^2 - x_3)$, $u_{x_2}(x) = 2x_1 x_2 \cos(x_1 x_2^2 - x_3)$ and $u_{x_3}(x) = -\cos(x_1 x_2^2 - x_3)$, so

$$Du(x) = \cos(x_1 x_2^2 - x_3) \begin{pmatrix} x_2^2 \\ 2x_1 x_2 \\ -1 \end{pmatrix}$$

- (b) We have $u_{x_i}(x) = 2x_i$, so Du(x) = 2x.
- (c) We have $u_{x_i}(x) = \frac{1}{2\sqrt{x_1^2 + \dots + x_n^2}} 2x_i = \frac{x_i}{|x|}$, so $Du(x) = \frac{x}{|x|}$.
- **2.** The two-dimensional multiindices of length $|\alpha| = 2$ are (2, 0), (1, 1) and (0, 2). Therefore,

$$\sum_{|\alpha|=2} \alpha! x^{\alpha} = (2,0)! x^{(2,0)} + (1,1)! x^{(1,1)} + (0,2)! x^{(0,2)} = 2x_1^2 + x_1 x_2 + 2x_2^2.$$

- 3. The partial derivatives D^{α} when $|\alpha| = 1$ are the components of the gradient of the function, which we already computed.
 - $u(x) = |x|^2$ We have $u_{x_i}(x) = 2x_i$. If $j \neq i$ then $u_{x_i x_j}(x) = 0$, while $u_{x_i x_i}(x) = 2$. Hence, we can write $D^{\alpha}u(x) = 2\delta_{\alpha_1,\alpha_2}$, where δ is the Krönecker delta function:

$$\delta_{i,j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

u(x) = |x| We have $u_{x_i}(x) = \frac{x_i}{|x|}$. We have $\left(\frac{1}{|x|}\right)_{x_j} = -\frac{1}{|x|^2}|x|_{x_j} = -\frac{x_j}{|x|^3}$. Hence, if $j \neq i$ then $u_{x_ix_j}(x) = -\frac{x_ix_j}{|x|^3}$. On the other hand, for i = j we get $u_{x_ix_i}(x) = \frac{1}{|x|} - \frac{x_i^2}{|x|^3}$. Summarizing, we have for any α of length $|\alpha| = 2$

$$D^{\alpha}u(x) = \frac{\delta_{\alpha_1,\alpha_2}}{|x|} - \frac{x_{\alpha_1}x_{\alpha_2}}{|x|^3}$$

4. We have

$$g'(t) = f_{x_1}(tx)x_1 + f_{x_2}(tx)x_2 = x_1 D^{(1,0)} f(tx) + x_2 D^{(0,1)} f(tx)$$

and

$$g''(t) = x_1^2 f_{x_1 x_1}(tx) + 2x_1 x_2 f_{x_1 x_2}(tx) + x_2^2 f_{x_2 x_2}(tx)$$

= $x_1^2 D^{(2,0)} f(tx) + 2x_1 x_2 D^{(1,1)} f(tx) + x_2^2 D^{(0,2)} f(tx).$

Integration

1. Compute the integral

$$\int_{B(0,1)} \operatorname{div} f(x) \, dx$$

where B(0, 1) is the unit ball in \mathbb{R}^3 and $f(x) = |x|^2 x$. What do you get when B(0, 1) is the unit ball (or *disc*) in \mathbb{R}^2 ?

Hint: Use the divergence theorem (Theorem 1(ii) in §C.2).

- **2.** Use the Gauss–Green theorem (Theorem 1(i) in §C.2) to prove all of the other identities in §C.2.
- **3.** A function $u: \mathbb{R}^n \to \mathbb{R}$ is *locally integrable* if for every bounded set $K \subset \mathbb{R}^n$, the integral

$$\int_{K} |u(x)| \, dx$$

is finite.

- (a) Show that $u(x) = \log |x|$ for $x \in \mathbb{R}^n$ is locally integrable, for any number of dimensions $n \in \mathbb{N}$.
- (b) Let $u(x) = |x|^p$ for $x \in \mathbb{R}^n$ and let $p \in \mathbb{R}$ be a given number. For what values of p is this function locally integrable?

Hint: If *u* is bounded on *K* (i.e., $\exists C > 0$ such that $|u(x)| \leq C$ for all $x \in K$) then *u* is integrable over *K*, so it suffices to concentrate on bounded domains *K* where *u* is unbounded.

Solution:

1. We use the divergence theorem:

$$I := \int_{B(0,1)} \operatorname{div} f(x) \, dx = \int_{\partial B(0,1)} f(x) \cdot v(x) \, dS(x) = \int_{\partial B(0,1)} |x|^2 x \cdot x \, dS(x) = |\partial B(0,1)|$$

where we have used the fact that v(x) = x on the unit sphere. We can look up the area $|\partial B(0, 1)|$ and find the answer $I = 4\pi$.

In \mathbb{R}^2 we get instead $I = |\partial B(0, 1)| = 2\pi$, the length of the unit circle.

2. We assume that the identity $\int_U u_{x_i} dx = \int_{\partial U} uv^i dS$ holds.

Divergence theorem:

$$\int_U \operatorname{div} u \, dx = \sum_{i=1}^n \int_U u^i_{x_i} \, dx = \sum_{i=1}^n \int_{\partial U} u^i v^i \, dS(x) = \int_{\partial U} u \cdot v \, dS.$$

Integration by parts:

$$\int_U u_{x_i} v \, dx = \int_U (uv)_{x_i} - uv_{x_i} \, dx = \int_{\partial U} uvv^i \, dS - \int_U uv_{x_i} \, dx$$

where we in the first step have used the product rule $u_{x_i}v = (uv)_{x_i} - uv_{x_i}$.

Theorem 3(i):

$$\int_U \Delta u \, dx = \sum_{i=1}^n \int_U (u_{x_i})_{x_i} \, dx = \sum_{i=1}^n \int_{\partial U} u_{x_i} v^i \, dS = \int_{\partial U} Du \cdot v \, dS.$$

Theorem 3(ii):

$$\int_{U} Du \cdot Dv \, dx = \sum_{i=1}^{n} \int_{U} u_{x_{i}} v_{x_{i}} \, dx = \sum_{i=1}^{n} \int_{U} (u_{x_{i}} v)_{x_{i}} - u_{x_{i}x_{i}} v \, dx$$
$$= \sum_{i=1}^{n} \int_{\partial U} u_{x_{i}} v v^{i} \, dS - \sum_{i=1}^{n} \int_{U} u_{x_{i}x_{i}} v \, dx$$
$$= \int_{\partial U} \frac{\partial u}{\partial v} v dS - \int_{U} v \Delta u \, dx$$

where we denote $\frac{\partial u}{\partial v} = v \cdot Du$.

Theorem 3(iii):

$$\int_{U} u\Delta v - v\Delta u \, dx = \sum_{i=1}^{n} \int_{U} uv_{x_{i}x_{i}} - vu_{x_{i}x_{i}} \, dx$$
$$= \sum_{i=1}^{n} \int_{U} (uv_{x_{i}})_{x_{i}} - u_{x_{i}}v_{x_{i}} - (vu_{x_{i}})_{x_{i}} + v_{x_{i}}u_{x_{i}} \, dx$$
$$= \sum_{i=1}^{n} \int_{\partial U} uv_{x_{i}}v^{i} - vu_{x_{i}}v^{i} \, dS$$
$$= \int_{\partial U} u\frac{\partial v}{\partial v} - v\frac{\partial u}{\partial v} \, dS.$$

3. (a) We only need to check that u is integrable near its singularity at x = 0. Let, say, K = B(0, 1); then

$$\int_{K} \left| \log |x| \right| dx = \int_{0}^{1} \int_{\partial B(0,r)} -\log r \, dS(x) \, dr = -\int_{0}^{1} |\partial B(0,r)| \log r \, dr$$
$$= -|\partial B(0,1)| \int_{0}^{1} r^{n-1} \log r \, dr,$$

which is finite for any $n \ge 1$. Hence, u is locally integrable. Here, we have first converted to polar coordinates and then used the fact that the (hyper-)area $|\partial B(0, r)|$ of the (hyper-)sphere $\partial B(0, r)$ equals $r^{n-1}|\partial B(0, 1)|$.

(b) If $p \ge 0$ then the function is locally bounded (i.e., bounded on every bounded set), so it's locally bounded. If p < 0 then *u* is bounded away from x = 0, so we only

need to check integrability near 0. If, say K = B(0, 1) then

$$\begin{split} \int_{K} u(x) \, dx &= \int_{0}^{1} \int_{\partial B(0,r)} r^{p} \, dS(x) dr = \int_{0}^{1} r^{p} |\partial B(0,r)| \, dr \\ &= |\partial B(0,1)| \int_{0}^{1} r^{p} r^{n-1} \, dr = |\partial B(0,1)| \int_{0}^{1} r^{p+n-1} \, dr \\ &= |\partial B(0,1)| \frac{1}{p+n}, \end{split}$$

where the last step is only true if p + n - 1 > -1, that is, p > -n; otherwise, the integral is infinite.

To conclude, $u(x) = |x|^p$ is locally integrable if and only if p > -n.

PDEs

1. Find a function $u: \mathbb{R}^3 \to \mathbb{R}$ satisfying the PDE

$$-\Delta u = 1$$
 in \mathbb{R}^3 .

Hint: Try the function $v(x) = |x|^2$ first.

- **2.** Solve the previous problem with \mathbb{R}^3 replaced by \mathbb{R}^n , for any $n \in \mathbb{N}$.
- 3. Solve problem 1.5.1 in Evans.

Solution:

1. If $v(x) = |x|^2$ then

$$\Delta v(x) = \sum_{i=1}^{3} \frac{\partial^2}{\partial x_i^2} (x_1^2 + x_2^2 + x_3^2) = 2 + 2 + 2 = 6.$$

Hence, the function $u(x) = -\frac{1}{6}|x|^2$ solves the PDE.

- 2. We see that $\Delta |x|^2 = 2n$, so the solution for general *n* is $u(x) = -\frac{1}{2n}|x|^2$.
- **3.** Section 1.2.1:
 - a.1 Laplace Linear, second-order
 - a.2 Helmholtz Linear, second-order
 - a.3 Linear transport Linear, first-order
 - a.4 Liouville Linear, first-order
 - a.5 Heat Linear, second-order
 - a.6 Schrödinger Linear, second-order
 - a.7 Kolmogorov Linear, second-order
 - a.8 Fokker-Planck Linear, second-order
 - a.9 Wave Linear, second-order

a.10 Klein-Gordon Linear, second-order

a.11 Telegraph Linear, second-order

a.12 General wave Linear, second-order

a.13 Airy Linear, third-order

a.14 Beam Linear, fourth-order

b.1 Eikonal Nonlinear, first-order

b.2 Nonlinear Poisson Semilinear, second-order

b.3 p-Laplacian Quasilinear, second-order

b.4 Minimal surface Quasilinear, second-order

b.5 Monge–Ampère Nonlinear, second-order

b.6 Hamilton–Jacobi Nonlinear, first-order (provided H is nonlinear in its first argument – otherwise the equation linear)

b.7 Scalar conservation law Quasilinear, first-order (provided f is nonlinear – otherwise the equation is linear)

b.8 Inviscid Burgers equation Quasilinear, first-order

b.9 Scalar reaction-diffusion Semilinear, second-order

b.10 Porous medium Quasilinear, second-order (unless $\gamma = 1$, in which case it's linear)

b.11 Nonlinear wave equation Semilinear, second-order

b.12 KdV Semilinear, third-order

b.13 Nonlinear Schrödinger Semilinear, second-order

Section 1.2.2:

a.1 Linear elasticity, equilibrium Linear, second-order

a.2 Linear elasticity Linear, second-order

a.3 Maxwell Linear, first-order

b.1 System of conservation laws Nonlinear, first-order (unless F is linear)

b.2 Reaction-diffusion system Semilinear, second-order

b.3 Euler Quasilinear, first-order

b.4 Navier-Stokes Quasilinear, second-order