Problem set 1 - Solutions
 MAT4301

Ulrik Skre Fjordholm

September 6, 2023

Problems marked with * can be skipped if you are short on time.

Vector calculus

1. Compute the gradient $D u$ of the following functions:
(a) $u(x)=\sin \left(x_{1} x_{2}^{2}-x_{3}\right)$ for $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$
(b) $u(x)=|x|^{2}$ for $x \in \mathbb{R}^{n}$
(c) $u(x)=|x|$ for $x \in \mathbb{R}^{n}$
(Here and elsewhere, $|x|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ denotes the Euclidean norm of x.)
2. Write out the expression

$$
\sum_{|\alpha|=2} \alpha!x^{\alpha}
$$

where $x=\left(x_{1}, x_{2}\right)$ is some point in \mathbb{R}^{2}.
(Here and elsewhere we use the convention that α denotes a multiindex, so the sum runs over all pairs of nonnegative integers $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}_{0}^{2}$ whose sum $|\alpha|=\alpha_{1}+\alpha_{2}$ equals 2.)
3. Compute the partial derivative $D^{\alpha} u$ for all multiindices α of length $|\alpha|=1$ and $|\alpha|=2$, for the functions $u(x)=|x|^{2}$ and $u(x)=|x|$ (where $\left.x \in \mathbb{R}^{n}\right)$.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a given function, fix a point $x \in \mathbb{R}^{2}$ and define $g(t)=f(t x)$. Write out $g^{\prime}(t)$ and $g^{\prime \prime}(t)$ in terms of partial derivatives of f. Use multiindex notation.
5. Solve problems 3, 4, 5 in Section 1.5 in Evans.

Hint for 1.5.3: Use induction on n, not k. Recall the binomial theorem, $(a+b)^{m}=\sum_{r=0}^{m}\binom{m}{r} a^{r} b^{m-r}$, where $\binom{m}{r}=\frac{m!}{r!(m-r)!}$ are the binomial coefficients.
Hint for 1.5.4: Use induction on n. Recall Leibniz' formula in one dimension: $\partial_{x_{n}}^{k}(f g)=\sum_{r=0}^{k}\binom{k}{r} \partial_{x_{n}}^{r} f \partial_{x_{n}}^{k-r} g$ for functions $f, g \in C^{k}\left(\mathbb{R}^{n}\right)$.
Hint for 1.5.5: As mentioned in the exercise, define $g(t)=f(t x)$ for $t \in \mathbb{R}$. Write down the k th order Taylor expansion for $g(1)$ (including error term), expanded around $t=0$. Show that the m th derivative of g can be written as $g^{(m)}(t)=\sum_{|\alpha|=m}\binom{m}{\alpha} x^{\alpha} D^{\alpha} f(t x)$. To this end:

- Show first that

$$
g^{(m)}(t)=\sum_{i_{1}=1}^{n} \cdots \sum_{i_{m}=1}^{n} x_{i_{1}} \cdots x_{i_{k}} \partial_{x_{i_{1}}} \cdots \partial_{x_{i_{m}}} f(t x)
$$

- Next, recall the fact that for a multiindex α of length $|\alpha|=m$, the number $\binom{m}{\alpha}=\frac{m!}{\alpha_{1}!\cdots \alpha_{n}!}$ is the number of ways to extract m balls of n different colors from a bag, picking α_{1} of the first color, α_{2} of the second color, and so on. Use this fact to rewrite the above expression for $g^{(m)}(t)$ in multiindex notation.

Solution:

1. (a) We have $u_{x_{1}}(x)=x_{2}^{2} \cos \left(x_{1} x_{2}^{2}-x_{3}\right), u_{x_{2}}(x)=2 x_{1} x_{2} \cos \left(x_{1} x_{2}^{2}-x_{3}\right)$ and $u_{x_{3}}(x)=-\cos \left(x_{1} x_{2}^{2}-x_{3}\right)$, so

$$
D u(x)=\cos \left(x_{1} x_{2}^{2}-x_{3}\right)\left(\begin{array}{c}
x_{2}^{2} \\
2 x_{1} x_{2} \\
-1
\end{array}\right) .
$$

(b) We have $u_{x_{i}}(x)=2 x_{i}$, so $D u(x)=2 x$.
(c) We have $u_{x_{i}}(x)=\frac{1}{2 \sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}} 2 x_{i}=\frac{x_{i}}{|x|}$, so $D u(x)=\frac{x}{|x|}$.
2. The two-dimensional multiindices of length $|\alpha|=2$ are $(2,0),(1,1)$ and $(0,2)$. Therefore,

$$
\sum_{|\alpha|=2} \alpha!x^{\alpha}=(2,0)!x^{(2,0)}+(1,1)!x^{(1,1)}+(0,2)!x^{(0,2)}=2 x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}
$$

3. The partial derivatives D^{α} when $|\alpha|=1$ are the components of the gradient of the function, which we already computed.
$u(x)=|x|^{2}$ We have $u_{x_{i}}(x)=2 x_{i}$. If $j \neq i$ then $u_{x_{i} x_{j}}(x)=0$, while $u_{x_{i} x_{i}}(x)=2$. Hence, we can write $D^{\alpha} u(x)=2 \delta_{\alpha_{1}, \alpha_{2}}$, where δ is the Krönecker delta function:

$$
\delta_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

$u(x)=|x|$ We have $u_{x_{i}}(x)=\frac{x_{i}}{|x|}$. We have $\left(\frac{1}{|x|}\right)_{x_{j}}=-\frac{1}{|x|^{2}}|x|_{x_{j}}=-\frac{x_{j}}{|x|^{3}}$. Hence, if $j \neq i$ then $u_{x_{i} x_{j}}(x)=-\frac{x_{i} x_{j}}{|x|^{3}}$. On the other hand, for $i=j$ we get $u_{x_{i} x_{i}}(x)=$ $\frac{1}{|x|}-\frac{x_{i}^{2}}{|x|^{3}}$. Summarizing, we have for any α of length $|\alpha|=2$

$$
D^{\alpha} u(x)=\frac{\delta_{\alpha_{1}, \alpha_{2}}}{|x|}-\frac{x_{\alpha_{1}} x_{\alpha_{2}}}{|x|^{3}} .
$$

4. We have

$$
g^{\prime}(t)=f_{x_{1}}(t x) x_{1}+f_{x_{2}}(t x) x_{2}=x_{1} D^{(1,0)} f(t x)+x_{2} D^{(0,1)} f(t x)
$$

and

$$
\begin{aligned}
g^{\prime \prime}(t) & =x_{1}^{2} f_{x_{1} x_{1}}(t x)+2 x_{1} x_{2} f_{x_{1} x_{2}}(t x)+x_{2}^{2} f_{x_{2} x_{2}}(t x) \\
& =x_{1}^{2} D^{(2,0)} f(t x)+2 x_{1} x_{2} D^{(1,1)} f(t x)+x_{2}^{2} D^{(0,2)} f(t x)
\end{aligned}
$$

Integration

1. Compute the integral

$$
\int_{B(0,1)} \operatorname{div} f(x) d x
$$

where $B(0,1)$ is the unit ball in \mathbb{R}^{3} and $f(x)=|x|^{2} x$. What do you get when $B(0,1)$ is the unit ball (or disc) in \mathbb{R}^{2} ?
Hint: Use the divergence theorem (Theorem 1(ii) in §C.2).
2. Use the Gauss-Green theorem (Theorem 1(i) in §C.2) to prove all of the other identities in §C.2.
3. A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is locally integrable if for every bounded set $K \subset \mathbb{R}^{n}$, the integral

$$
\int_{K}|u(x)| d x
$$

is finite.
(a) Show that $u(x)=\log |x|$ for $x \in \mathbb{R}^{n}$ is locally integrable, for any number of dimensions $n \in \mathbb{N}$.
(b) Let $u(x)=|x|^{p}$ for $x \in \mathbb{R}^{n}$ and let $p \in \mathbb{R}$ be a given number. For what values of p is this function locally integrable?

Hint: If u is bounded on K (i.e., $\exists C>0$ such that $|u(x)| \leqslant C$ for all $x \in K$) then u is integrable over K, so it suffices to concentrate on bounded domains K where u is unbounded.

Solution:

1. We use the divergence theorem:
$I:=\int_{B(0,1)} \operatorname{div} f(x) d x=\int_{\partial B(0,1)} f(x) \cdot v(x) d S(x)=\int_{\partial B(0,1)}|x|^{2} x \cdot x d S(x)=|\partial B(0,1)|$
where we have used the fact that $v(x)=x$ on the unit sphere. We can look up the area $|\partial B(0,1)|$ and find the answer $I=4 \pi$.
In \mathbb{R}^{2} we get instead $I=|\partial B(0,1)|=2 \pi$, the length of the unit circle.
2. We assume that the identity $\int_{U} u_{x_{i}} d x=\int_{\partial U} u v^{i} d S$ holds.

Divergence theorem:

$$
\int_{U} \operatorname{div} u d x=\sum_{i=1}^{n} \int_{U} u_{x_{i}}^{i} d x=\sum_{i=1}^{n} \int_{\partial U} u^{i} v^{i} d S(x)=\int_{\partial U} u \cdot v d S .
$$

Integration by parts:

$$
\int_{U} u_{x_{i}} v d x=\int_{U}(u v)_{x_{i}}-u v_{x_{i}} d x=\int_{\partial U} u v v^{i} d S-\int_{U} u v_{x_{i}} d x
$$

where we in the first step have used the product rule $u_{x_{i}} v=(u v)_{x_{i}}-u v_{x_{i}}$.

Theorem 3(i):

$$
\int_{U} \Delta u d x=\sum_{i=1}^{n} \int_{U}\left(u_{x_{i}}\right)_{x_{i}} d x=\sum_{i=1}^{n} \int_{\partial U} u_{x_{i}} v^{i} d S=\int_{\partial U} D u \cdot v d S .
$$

Theorem 3(ii):

$$
\begin{aligned}
\int_{U} D u \cdot D v d x & =\sum_{i=1}^{n} \int_{U} u_{x_{i}} v_{x_{i}} d x=\sum_{i=1}^{n} \int_{U}\left(u_{x_{i}} v\right)_{x_{i}}-u_{x_{i} x_{i}} v d x \\
& =\sum_{i=1}^{n} \int_{\partial U} u_{x_{i}} v v^{i} d S-\sum_{i=1}^{n} \int_{U} u_{x_{i} x_{i}} v d x \\
& =\int_{\partial U} \frac{\partial u}{\partial v} v d S-\int_{U} v \Delta u d x
\end{aligned}
$$

where we denote $\frac{\partial u}{\partial v}=v \cdot D u$.

Theorem 3(iii):

$$
\begin{aligned}
\int_{U} u \Delta v-v \Delta u d x & =\sum_{i=1}^{n} \int_{U} u v_{x_{i} x_{i}}-v u_{x_{i} x_{i}} d x \\
& =\sum_{i=1}^{n} \int_{U}\left(u v_{x_{i}}\right)_{x_{i}}-u_{x_{i}} v_{x_{i}}-\left(v u_{x_{i}}\right)_{x_{i}}+v_{x_{i}} u_{x_{i}} d x \\
& =\sum_{i=1}^{n} \int_{\partial U} u v_{x_{i}} v^{i}-v u_{x_{i}} v^{i} d S \\
& =\int_{\partial U} u \frac{\partial v}{\partial v}-v \frac{\partial u}{\partial v} d S
\end{aligned}
$$

3. (a) We only need to check that u is integrable near its singularity at $x=0$. Let, say, $K=B(0,1)$; then

$$
\begin{aligned}
\int_{K}|\log | x| | d x & =\int_{0}^{1} \int_{\partial B(0, r)}-\log r d S(x) d r=-\int_{0}^{1}|\partial B(0, r)| \log r d r \\
& =-|\partial B(0,1)| \int_{0}^{1} r^{n-1} \log r d r
\end{aligned}
$$

which is finite for any $n \geqslant 1$. Hence, u is locally integrable. Here, we have first converted to polar coordinates and then used the fact that the (hyper-)area $|\partial B(0, r)|$ of the (hyper-) sphere $\partial B(0, r)$ equals $r^{n-1}|\partial B(0,1)|$.
(b) If $p \geqslant 0$ then the function is locally bounded (i.e., bounded on every bounded set), so it's locally bounded. If $p<0$ then u is bounded away from $x=0$, so we only
need to check integrability near 0 . If, say $K=B(0,1)$ then

$$
\begin{aligned}
\int_{K} u(x) d x & =\int_{0}^{1} \int_{\partial B(0, r)} r^{p} d S(x) d r=\int_{0}^{1} r^{p}|\partial B(0, r)| d r \\
& =|\partial B(0,1)| \int_{0}^{1} r^{p} r^{n-1} d r=|\partial B(0,1)| \int_{0}^{1} r^{p+n-1} d r \\
& =|\partial B(0,1)| \frac{1}{p+n},
\end{aligned}
$$

where the last step is only true if $p+n-1>-1$, that is, $p>-n$; otherwise, the integral is infinite.
To conclude, $u(x)=|x|^{p}$ is locally integrable if and only if $p>-n$.

PDEs

1. Find a function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfying the PDE

$$
-\Delta u=1 \quad \text { in } \mathbb{R}^{3}
$$

Hint: Try the function $v(x)=|x|^{2}$ first.
2. Solve the previous problem with \mathbb{R}^{3} replaced by \mathbb{R}^{n}, for any $n \in \mathbb{N}$.
3. Solve problem 1.5.1 in Evans.

Solution:

1. If $v(x)=|x|^{2}$ then

$$
\Delta v(x)=\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=2+2+2=6 .
$$

Hence, the function $u(x)=-\frac{1}{6}|x|^{2}$ solves the PDE.
2. We see that $\Delta|x|^{2}=2 n$, so the solution for general n is $u(x)=-\frac{1}{2 n}|x|^{2}$.
3. Section 1.2.1:
a. 1 Laplace Linear, second-order
a. 2 Helmholtz Linear, second-order
a. 3 Linear transport Linear, first-order
a. 4 Liouville Linear, first-order
a. 5 Heat Linear, second-order
a. 6 Schrödinger Linear, second-order
a. 7 Kolmogorov Linear, second-order a. 8 Fokker-Planck Linear, second-order
a. 9 Wave Linear, second-order
a. 10 Klein-Gordon Linear, second-order
a. 11 Telegraph Linear, second-order
a. 12 General wave Linear, second-order
a. 13 Airy Linear, third-order
a. 14 Beam Linear, fourth-order
b. 1 Eikonal Nonlinear, first-order
b. 2 Nonlinear Poisson Semilinear, second-order
b. 3 p-Laplacian Quasilinear, second-order
b. 4 Minimal surface Quasilinear, second-order
b. 5 Monge-Ampère Nonlinear, second-order
b. 6 Hamilton-Jacobi Nonlinear, first-order (provided H is nonlinear in its first argument - otherwise the equation linear)
b. 7 Scalar conservation law Quasilinear, first-order (provided f is nonlinear - otherwise the equation is linear)
b. 8 Inviscid Burgers equation Quasilinear, first-order
b. 9 Scalar reaction-diffusion Semilinear, second-order
b. 10 Porous medium Quasilinear, second-order (unless $\gamma=1$, in which case it's linear)
b. 11 Nonlinear wave equation Semilinear, second-order
b. 12 KdV Semilinear, third-order
b. 13 Nonlinear Schrödinger Semilinear, second-order

Section 1.2.2:
a. 1 Linear elasticity, equilibrium Linear, second-order
a. 2 Linear elasticity Linear, second-order
a. 3 Maxwell Linear, first-order
b. 1 System of conservation laws Nonlinear, first-order (unless F is linear)
b. 2 Reaction-diffusion system Semilinear, second-order
b. 3 Euler Quasilinear, first-order
b. 4 Navier-Stokes Quasilinear, second-order

