# Problem set 2 <br> MAT4301 

Ulrik Skre Fjordholm

September 6, 2023

Problems marked with * can be skipped if you are short on time.

1. Consider the Poisson equation

$$
\begin{equation*}
-\Delta u=f \quad\left(x \in \mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

(a) Write out this equation in $n=1$ dimensions.
(b) Find all solutions of (1) in $n=1$ dimensions when

$$
f \equiv 0 \quad \text { and } \quad f(x)=\sin (a x) \text { for some } a \in \mathbb{R}
$$

(c) Solve the following boundary value problem on the interval $(a, b) \subset \mathbb{R}$,

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=1 \\
u(a)=0, u(b)=1
\end{array} \quad(x \in(a, b))\right.
$$

2. Solve the initial value problem

$$
\begin{cases}u_{t}+b \cdot D u=0 & \left(x \in \mathbb{R}^{2}, t>0\right)  \tag{2}\\ u(x, 0)=g(x) & \left(x \in \mathbb{R}^{2}\right)\end{cases}
$$

where $u: \mathbb{R}^{2} \times[0, \infty) \rightarrow \mathbb{R}$ is the unknown, $b=(1,3)$ and $g(x)=\sin \left(x_{1}\right) \cos \left(x_{2}\right)$.
3. Solve the initial-boundary value problem

$$
\begin{cases}u_{t}+b u_{x}=0 & (x>0, t>0)  \tag{3}\\ u(x, 0)=g(x) & (x>0) \\ u(0, t)=h(t) & (t \geqslant 0)\end{cases}
$$

where $u: \overline{\mathbb{R}}_{+} \times \overline{\mathbb{R}}_{+} \rightarrow \mathbb{R}$ is the unknown, $b=2, g(x)=x$ and $h(t)=t^{2}$.
Hint: Draw a picture of the domain (the first quadrant of the $x-t$-plane) and graph the characteristics. Where do they hit the boundary of the domain?
4. Consider (3) again, but this time with a velocity $b<0$. Does there always exist a solution of (3)?

Hint: Draw a new picture of the domain and characteristics.

