Problem set 2 - Solutions
 MAT4301

Ulrik Skre Fjordholm

September 12, 2023

Problems marked with * can be skipped if you are short on time.

1. Consider the Poisson equation

$$
\begin{equation*}
-\Delta u=f \quad\left(x \in \mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

(a) Write out this equation in $n=1$ dimensions.
(b) Find all solutions of (1) in $n=1$ dimensions when

$$
f \equiv 0 \quad \text { and } \quad f(x)=\sin (a x) \text { for some } a \in \mathbb{R}
$$

(c) Solve the following boundary value problem on the interval $(a, b) \subset \mathbb{R}$,

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=1 \\
u(a)=0, u(b)=1
\end{array} \quad(x \in(a, b))\right.
$$

Solution:

(a) The equation in $n=1$ dimensions states

$$
-u^{\prime \prime}(x)=f(x) \quad(x \in \mathbb{R})
$$

(b) If $f \equiv 0$ then $u^{\prime \prime} \equiv 0$, that is, $u(x)=A x+B$ for constants $A, B \in \mathbb{R}$.

If $f(x)=\sin (a x)$ then integrating twice yields

$$
u(x)=A x+B-\int^{x} \int^{y} \sin (a z) d z d y=A x+B+\frac{\sin (a x)}{a^{2}}
$$

(c) Integrating the equation $u^{\prime \prime}(x)=-1$ twice yields $u(x)=A x+B-\frac{x^{2}}{2}$ for constants $A, B \in \mathbb{R}$. Inserting the boundary data yields

$$
0=u(a)=A a+B-\frac{a^{2}}{2}, \quad 1=A b+B-\frac{b^{2}}{2}
$$

Solving for A and B yields

$$
A=\frac{2+b^{2}-a^{2}}{2(b-a)}, \quad B=\frac{a^{2}}{2}-a A
$$

2. Solve the initial value problem

$$
\begin{cases}u_{t}+b \cdot D u=0 & \left(x \in \mathbb{R}^{2}, t>0\right) \tag{2}\\ u(x, 0)=g(x) & \left(x \in \mathbb{R}^{2}\right)\end{cases}
$$

where $u: \mathbb{R}^{2} \times[0, \infty) \rightarrow \mathbb{R}$ is the unknown, $b=(1,3)$ and $g(x)=\sin \left(x_{1}\right) \cos \left(x_{2}\right)$.
Solution: The method of characteristics shows that $s \mapsto u(x+s b, t+s)$ is constant, for any choice of x and t. Setting $s=0$ and $s=-t$ then yields

$$
u(x, t)=u(x-t b, 0)=g(x-t b)=\sin \left(x_{1}-t\right) \cos \left(x_{2}-3 t\right)
$$

3. Solve the initial-boundary value problem

$$
\begin{cases}u_{t}+b u_{x}=0 & (x>0, t>0) \tag{3}\\ u(x, 0)=g(x) & (x>0) \\ u(0, t)=h(t) & (t \geqslant 0)\end{cases}
$$

where $u: \overline{\mathbb{R}}_{+} \times \overline{\mathbb{R}}_{+} \rightarrow \mathbb{R}$ is the unknown, $b=2, g(x)=x$ and $h(t)=t^{2}$.
Hint: Draw a picture of the domain (the first quadrant of the x - t-plane) and graph the characteristics. Where do they hit the boundary of the domain?

Solution: The characteristics are straight lines in the (first quadrant of the) $x-t$-plane with slope 2 , so they look like the following:

The characteristics are of the form $s \mapsto(x+2 s, t+s)$, and u is constant along these curves. Characteristics that cross the positive x-axis take data from the initial data g, while those that cross the positive t-axis take data from the boundary data h. The boundary separating these two domains is the curve $x=t / 2$. Thus, points (x, t) with $x<t / 2$ take data from h, while those with $x>t / 2$ take data from g. This gives
$x<t / 2:$ Set $s=0$ and $s=-x / 2$ to get

$$
u(x, t)=u(0, t-x / 2)=h(t-x / 2)=(t-x / 2)^{2}
$$

$x>t / 2:$ Set $s=0$ and $s=-t$ to get

$$
u(x, t)=u(x-2 t, 0)=g(x-2 t)=x-2 t
$$

Along the curve $x=t / 2$, these two expressions coincide, we can use either expression. We conclude that the solution is

$$
u(x, t)= \begin{cases}(t-x / 2)^{2} & (x \leqslant t / 2) \\ x-2 t & (x>t / 2)\end{cases}
$$

4. Consider (3) again, but this time with a velocity $b<0$. Does there always exist a solution of (3)?

Hint: Draw a new picture of the domain and characteristics.

Solution: The characteristics now go from right to left, instead of from left to right. Thus, each characteristic will cross both the positive x and the positive t axis. Indeed, the characteristics are curves $s \mapsto(x-s b, t-s)$; setting $s=t$ and $s=x / b$ gives

$$
u(x-b t, 0)=u(0, t-x / b)
$$

(note that both $x-b t$ and $t-x / b$ are positive, since $b<0$). Inserting the initial and boundary data then yields

$$
\begin{equation*}
g(x-b t)=h(t-x / b) \tag{*}
\end{equation*}
$$

But g and h are two arbitrary functions, and do not necessarily satisfy the above condition! (For instance in the case $g(x)=x, h(t)=t^{2}$.) A solution of (3) for $b<0$ therefore exists if and only if ($*$) holds.

Remark. If ($*$) holds, then the boundary condition automatically holds if the initial condition holds - thus, it is superfluous to require a boundary condition in this case. When $b<0$, we can think of characteristics as flowing out of the domain along the boundary $\{(x, t): x=0\}$, while if $b>0$ then characteristics are flowing into the domain. The morale of the previous two problems is that we should not impose boundary data at outflow boundaries.

