Problem set 3 MAT4301

Ulrik Skre Fjordholm

September 12, 2023

1. (Problem 2.5.4 in Evans) Give a direct proof that if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is harmonic within a bounded, open set Ω , then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

Hint: Define $u_{\varepsilon} := u + \varepsilon |x|^2$ for $\varepsilon > 0$, and show u_{ε} cannot attain its maximum over $\overline{\Omega}$ at an interior point.

Hint: Prove the above by contradiction by assuming that u_{ε} has a maximum at some $x_0 \in \Omega$. What is then $\Delta u_{\varepsilon}(x_0)$?

2. (Problem 2.5.5 in Evans) We say $v \in C^2(\Omega)$ is sub-harmonic if

$$-\Delta v \leqslant 0 \qquad \text{in } \Omega. \tag{1}$$

(a) Prove for sub-harmonic v that

$$v(x) \leqslant \int_{B(x,r)} v \, dy$$
 for all $B(x,r) \subset \Omega$. (2)

- (b) Let $\varphi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume that u is harmonic and $v := \varphi(u)$. Prove v is sub-harmonic.
- (c) Prove that $v := |Du|^2$ is sub-harmonic, whenever u is harmonic.
- **3.** (a) Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be sub-harmonic within a bounded, open set Ω . Prove that

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

- (b) Show that the same statement with "max" replaced by "min" is not necessarily true. That is, find a sub-harmonic function u on a bounded, open set Ω for which $\min_{\overline{\Omega}} u < \min_{\partial\Omega} u$.
- **4.** (a) (*Problem 2.5.6 in Evans*) Let Ω be a bounded, open subset of \mathbb{R}^n . Prove that there exists a constant C, depending only on Ω , such that

$$\max_{\overline{\Omega}} |u| \leqslant C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right) \tag{3}$$

whenever u is a smooth solution of

$$\begin{cases}
-\Delta u = f & \text{in } \Omega \\
u = g & \text{on } \partial\Omega.
\end{cases}$$
(4)

Here, $f: \overline{\Omega} \to \mathbb{R}$ and $g: \partial \Omega \to \mathbb{R}$ are given, continuous functions. Hint: Find an $\varepsilon > 0$ so that the function $u_{\varepsilon}(x) = u(x) + \varepsilon |x|^2$ from Problem 1 becomes sub-harmonic. Then do the same for the function $v_{\varepsilon}(x) = -u(x) + \varepsilon |x|^2$.

(b) State and prove a result which makes the following claim rigorous: If u_1 and u_2 are solutions of (4) with data f_1 , g_1 and f_2 , g_2 , respectively, then u_1 and u_2 are close whenever the data are close.