Problem set 3 – Solutions MAT4301

Ulrik Skre Fjordholm

September 25, 2023

1. (Problem 2.5.4 in Evans) Give a direct proof that if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is harmonic within a bounded, open set Ω , then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

Hint: Define $u_{\varepsilon} := u + \varepsilon |x|^2$ for $\varepsilon > 0$, and show u_{ε} cannot attain its maximum over $\overline{\Omega}$ at an interior point.

Hint: Prove the above by contradiction by assuming that u_{ε} has a maximum at some $x_0 \in \Omega$. What is then $\Delta u_{\varepsilon}(x_0)$?

Solution: Define $u_{\varepsilon}(x) = u(x) + \varepsilon |x|^2$. Then

$$\Delta u_{\varepsilon}(x) = \Delta u(x) + \varepsilon \Delta |x|^2 = 2n\varepsilon > 0.$$

Assume, by way of contradiction, that u_{ε} has a maximum at some point $x_0 \in \Omega$. Then $Du_{\varepsilon}(x_0) = 0$ and $\Delta u_{\varepsilon}(x_0) \leqslant 0$, which contradicts the above computation. Thus, u_{ε} cannot have maxima inside of Ω . Since $\overline{\Omega}$ is a closed and bounded set, and u_{ε} is continuous on that set, it must attain a maximum somewhere, which therefore must be on the boundary. This proves the claim.

2. (Problem 2.5.5 in Evans) We say $v \in C^2(\Omega)$ is sub-harmonic if

$$-\Delta v \leqslant 0 \qquad \text{in } \Omega. \tag{1}$$

(a) Prove for sub-harmonic v that

$$v(x) \leqslant \int_{B(x,r)} v \, dy$$
 for all $B(x,r) \subset \Omega$. (2)

- (b) Let $\varphi: \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume that u is harmonic and $v := \varphi(u)$. Prove v is sub-harmonic.
- (c) Prove that $v := |Du|^2$ is sub-harmonic, whenever u is harmonic.

Solution:

(a) The proof proceeds just as for harmonic functions, only that instead of using $\Delta v = 0$ we use $\Delta v \ge 0$. Below is an outline of the proof.

Define

$$\psi(r) := \int_{B(x,r)} v(y) \, dy(y) = \frac{1}{\alpha(n)r^n} \int_{B(x,r)} v(y) \, dy$$
$$= \frac{1}{\alpha(n)} \int_{B(0,1)} v(x+rz) \, dz,$$

where $\alpha(n)$ is the volume of B(0, 1), and we have made the change of variables y = x + rz. Then

$$\psi'(r) = \frac{1}{\alpha(n)} \int_{B(0,1)} Dv(x+rz) \cdot z \, dz$$

(changing to polar coordinates)

$$= \frac{1}{\alpha(n)} \int_0^1 \int_{\partial B(0,s)} Dv(x+rz) \cdot z \, dS(z) \, ds$$

(observing that v(z) = z/s)

$$= \frac{1}{\alpha(n)} \int_0^1 s \int_{\partial B(0,s)} Dv(x+rz) \cdot v(z) \, dS(z) \, ds$$

(using the divergence theorem)

$$= \frac{1}{\alpha(n)} \int_0^1 s \int_{B(0,s)} \operatorname{div}_z(Dv(x+rz)) \, dz \, ds$$
$$= \frac{1}{\alpha(n)} \int_0^1 s \int_{B(0,s)} r \Delta v(x+rz) \, dz \, ds$$

(since $\Delta v \geqslant 0$)

$$\geqslant 0$$
.

Hence, ψ is an increasing function, with $\lim_{r\to 0} \psi(r) = \lim_{r\to 0} \int_{B(x,r)} v(y) \, dy(y) = v(x)$. The conclusion (2) now follows.

(b) We have

$$v_{x_i} = \varphi'(u)u_{x_i}, \qquad v_{x_ix_i} = \varphi''(u)u_{x_i}^2 + \varphi'(u)u_{x_ix_i}.$$

Therefore,

$$\Delta v = \sum_{i=1}^n \underbrace{\varphi''(u)u_{x_i}^2}_{\geqslant 0} + \varphi'(u)u_{x_ix_i} \geqslant \sum_{i=1}^n \varphi'(u)u_{x_ix_i} = \varphi'(u)\Delta u = 0,$$

which proves our claim.

(c) We can write $v = \sum_{i=1}^{n} (u_{x_i})^2$. Since u is harmonic, also u_{x_i} is harmonic for each i, so by Problem (b), $(u_{x_i})^2$ is sub-harmonic. Since the sum of sub-harmonic functions is sub-harmonic, we conclude that v must be sub-harmonic.

3. (a) Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be sub-harmonic within a bounded, open set Ω . Prove that

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

(b) Show that the same statement with "max" replaced by "min" is not necessarily true. That is, find a sub-harmonic function u on a bounded, open set Ω for which $\min_{\overline{\Omega}} u < \min_{\partial\Omega} u$.

Solution:

- (a) As in Problem 1, let $v_{\varepsilon}(x) = v(x) + \varepsilon |x|^2$. Then v_{ε} is bounded and continuous on the compact set $\overline{\Omega}$, and $\Delta v_{\varepsilon}(x) = \Delta v(x) + 2n\varepsilon > 0$. Moreover, by the extremal value theorem, v_{ε} attains a maximum at some $x_0 \in \overline{\Omega}$. If $x_0 \in \Omega$ then $\Delta v_{\varepsilon}(x_0) \leq 0$, contradicting $\Delta v_{\varepsilon}(x_0) > 0$. Hence, $x_0 \in \partial \Omega$, and the conclusion follows.
- (b) Let $\Omega = B^0(0, 1)$, the open unit ball, and let $u(x) = |x|^2$. Then $\Delta u(x) = 2n > 0$, so u is sub-harmonic, but $\min_{\overline{\Omega}} u = 0 < \min_{\partial \Omega} u = 1$.
- **4.** (a) (*Problem 2.5.6 in Evans*) Let Ω be a bounded, open subset of \mathbb{R}^n . Prove that there exists a constant C, depending only on Ω , such that

$$\max_{\overline{\Omega}} |u| \leqslant C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right)$$
 (3)

whenever u is a smooth solution of

$$\begin{cases}
-\Delta u = f & \text{in } \Omega \\
u = g & \text{on } \partial\Omega.
\end{cases}$$
(4)

Here, $f: \overline{\Omega} \to \mathbb{R}$ and $g: \partial\Omega \to \mathbb{R}$ are given, continuous functions.

Hint: Find an $\varepsilon > 0$ so that the function $u_{\varepsilon}(x) = u(x) + \varepsilon |x|^2$ from Problem 1 becomes sub-harmonic. Then do the same for the function $v_{\varepsilon}(x) = -u(x) + \varepsilon |x|^2$.

(b) State and prove a result which makes the following claim rigorous: If u_1 and u_2 are solutions of (4) with data f_1 , g_1 and f_2 , g_2 , respectively, then u_1 and u_2 are close whenever the data are close.

Solution:

(a) Let u solve (4), and define $u_{\varepsilon}(x) = u(x) + \varepsilon |x|^2$. Then

$$\Delta u_{\varepsilon}(x) = \Delta u(x) + \varepsilon \Delta |x|^2 = -f(x) + 2n\varepsilon.$$

If we choose $\varepsilon = \max_{x \in \overline{\Omega}} |f(x)|$, then $\Delta u_{\varepsilon}(x) \geqslant 0$, that is, u_{ε} is sub-harmonic. Hence, by Problem 3,

$$u_{\varepsilon}(x) \leqslant \max_{\partial \Omega} u_{\varepsilon} = \max_{\partial \Omega} (u(x) + \varepsilon |x|^{2}) \leqslant \max_{\partial \Omega} u(x) + \varepsilon \underbrace{\max_{\partial \Omega} |x|^{2}}_{=R}$$
$$= \max_{\partial \Omega} g + \varepsilon R$$

for all $x \in \Omega$, and therefore

$$u(x) = u_{\varepsilon}(x) - \varepsilon |x|^2 \leqslant u_{\varepsilon}(x) \leqslant \max_{\partial \Omega} g + \varepsilon R.$$

Next, setting $v_{\varepsilon}(x) = -u(x) + \varepsilon |x|^2$, we find that v_{ε} is sub-harmonic for the same ε , and therefore,

$$-u(x) \leqslant \max_{\partial \Omega} (-g) + \varepsilon R.$$

We conclude that

$$|u(x)| = \max(u(x), -u(x)) \leqslant \max_{\partial \Omega} |g| + R \max_{\overline{\Omega}} |f| \leqslant C \left(\max_{\partial \Omega} |g| + \max_{\in \overline{\Omega}} |f| \right)$$

where $C = \max(1, R)$.

(b) The statement is: If u_1 and u_2 are solutions of (4) with data f_1, g_1 and f_2, g_2 , respectively, then

$$\max_{\overline{\Omega}} |u_1 - u_2| \leqslant C \left(\max_{\partial \Omega} |g_1 - g_2| + \max_{\overline{\Omega}} |f_1 - f_2| \right).$$

For the proof, apply Problem (a) to the function $u=u_1-u_2$, which satisfies (4) with $f=f_1-f_2$ and $g=g_1-g_2$. The claim is them precisely (3).