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1. (Problem 2.5.4 in Evans) Give a direct proof that if u € C2(2) N C(RQ) is harmonic within a
bounded, open set €2, then

max ¥ = max u.
Q

Hint: Define u, := u + ¢|x|? for ¢ > 0, and show u, cannot attain its maximum over £ at an
interior point.

Hint: Prove the above by contradiction by assuming that 1, has a maximum at some xo € €2.
What is then Au,(xg)?

Solution: Define u;(x) = u(x) + ¢|x|>. Then
Aug(x) = Au(x) + eA|x|* = 2ne > 0.

Assume, by way of contradiction, that u, has a maximum at some point xo € 2. Then
Dug(xg) = 0 and Aug(xo) < 0, which contradicts the above computation. Thus, u, can-
not have maxima inside of €. Since € is a closed and bounded set, and u, is continuous on
that set, it must attain a maximum somewhere, which therefore must be on the boundary. This
proves the claim.

2. (Problem 2.5.5 in Evans) We say v € C2(Q) is sub-harmonic if
—Av <0 in Q. €))

(a) Prove for sub-harmonic v that
v(x) < 7[ vdy for all B(x,r) C 2. 2)
J B(x,r)

(b) Let : R — R be smooth and convex. Assume that ¥ is harmonic and v := ¢(u). Prove
v is sub-harmonic.

(c) Prove that v := | Du|? is sub-harmonic, whenever u is harmonic.

Solution:

(a) The proof proceeds just as for harmonic functions, only that instead of using Av = 0 we
use Av > 0. Below is an outline of the proof.



(b)

(©

Define

1
v =1 e = oon [ o

s

1
= v(x +rz)dz,
a(n) JB(,1)

where «(n) is the volume of B(0, 1), and we have made the change of variables y =
X + rz. Then

1

a(n) JBo,1)

Y'(r) = Dv(x +rz)-zdz

(changing to polar coordinates)

1 1
= / / Dv(x +rz)-zdS(z)ds
a(n) Jo JaB(.s)

(observing that v(z) = z/s)

1 1
= @/0 S/BB(O’S)Dv(x+rz)-v(z)dS(z)ds

(using the divergence theorem)

1
1 / s/ div,(Dv(x +rz))dzds
a(n) Jo  JB.s)
1 1
/ s/ rAv(x +rz)dzds
a(n) Jo B(0,s)

(since Av > 0)
> 0.

Hence, v is an increasing function, with lim, o ¥ (r) = lim,_ JCB(x " v(¥)dy(y) =
v(x). The conclusion (2) now follows.

We have
Ux; = ‘P/(”)ux,- s Uxjx; = (p”(u)uil_ + ‘/’/(u)”x,-x,--

Therefore,

n n
Av =" ¢" (0}, +¢' Wix,x; > ) ¢ Wity = ¢'w)Au =0,
i=1 T i=1

=

which proves our claim.

We can write v = Y, (ux;)?. Since u is harmonic, also uy, is harmonic for each i,
so by Problem (b), (u xi)z is sub-harmonic. Since the sum of sub-harmonic functions is
sub-harmonic, we conclude that v must be sub-harmonic.




3. (a) Letu € C2(Q) N C(R) be sub-harmonic within a bounded, open set 2. Prove that

max ¥ = maxu.
Q 0Q

(b) Show that the same statement with “max” replaced by “min” is not necessarily true.
That is, find a sub-harmonic function u on a bounded, open set 2 for which
ming u < minyg u.

Solution:

(a) As in Problem 1, let v.(x) = v(x) + &|x|?. Then v, is bounded and continuous on
the compact set Q, and Avg(x) = Av(x) + 2ne > 0. Moreover, by the extremal
value theorem, v, attains a maximum at some xo € Q. If xo € Q then Av,(xo) < 0,
contradicting Avg(x¢) > 0. Hence, xo € d€2, and the conclusion follows.

(b) Let = B°(0, 1), the open unit ball, and let u(x) = |x|?. Then Au(x) = 2n > 0, so u
is sub-harmonic, but ming # = 0 < mingq u = 1.

4. (a) (Problem 2.5.6 in Evans) Let Q2 be a bounded, open subset of R”. Prove that there
exists a constant C, depending only on €2, such that

<C 3
m§aXIu| (rrangXIgl +m§aX|f|) 3)

whenever u is a smooth solution of

—Au = in Q

4 “
u=g on 0L2.

Here, /:Q — Rand g: 92 — R are given, continuous functions.

Hint: Find an & > 0 so that the function u,(x) = u(x) + &|x|? from Problem 1
becomes sub-harmonic. Then do the same for the function v, (x) = —u(x) + &|x|?.

(b) State and prove a result which makes the following claim rigorous: If u; and u, are
solutions of (4) with data f1, g; and f>, g2, respectively, then u; and u, are close
whenever the data are close.

Solution:
(a) Let u solve (4), and define u,(x) = u(x) + &|x|?. Then
Aug(x) = Au(x) + eAlx|? = — f(x) + 2ne.

If we choose ¢ = max, g | f(x)|, then Aug(x) > 0, that is, u, is sub-harmonic. Hence,
by Problem 3,

ue(x) < max v, = max(u(x) + &|x|?) < maxu(x) + & max |x|?
() < max e = max(u(x) + elx[’) < maxu(x) + e max x|

———
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(b)

for all x € 2, and therefore

u(x) = ue(x) — elx|? <ue(x) < maxg + eR.

Next, setting ve(x) = —u(x) + &|x|?, we find that v, is sub-harmonic for the same &,
and therefore,
—u(x) < nggx(—g) + eR.

‘We conclude that

|u(x)| = max(u(x), —u(x)) < max |g| + Rmax | f| < C(max|g| + max |f])
I Q Q2 eQ

where C = max(1, R).

The statement is: If u; and u, are solutions of (4) with data f1, g; and f3, g2, respec-
tively, then
max |u; — | < C(max|g1 — g2| + max| fi — f2]).
Q Q2 Q

For the proof, apply Problem (a) to the function ¥ = u; — u,, which satisfies (4) with
f = fi— f>and g = g1 — g». The claim is them precisely (3).




