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1. (Maximum principle) Let @ C R” be open and bounded and consider the advection-diffusion

problem
b-Du = uAu (in ©2) 1)

where b € R” is a fixed vector (the velocity) and p > 0 is a given number (the diffusion
coefficient or viscosity). Prove the maximum principle

u(x) < max u(y) VxeQ 2)
yei2

for any function u € C2(2) N C(Q) satisfying (1).

Hint: Show first that if a function v satisfies b - Dv < pAw in €2, then v cannot have a
maximum in €. Then let ve(x) = u(x) + 8(|X|2 — Mb - x) for some M, e > 0.
Remark. Consider the time-dependent equation

v, +b-Dv=pulAv (1)

for some v = v(x,t). If v is a stationary solution (i.e., time-independent) then v; = 0 and so
u(x) := v(x,0) will be a solution of (1). The PDE (1) features both transport (b - Dv) and
diffusion («Av). For instance, it can model the distribution of heat v(x, ¢) in a fluid which
has heat conductivity u and which moves through space with velocity b.

Solution: Assume first that v € C2(R2) N C(Q) satisfies b - Dv < uAvin Q. If xg € Qisa
maximum of v, then Dv(xg) = 0 and Av(xg) < 0. Thus,

0> b-Duv(xg) — uAv(xg) > 0,

a contradiction.
Next, as indicated in the hint, let vo(x) = u(x) + £(|x|2 — Mb - x) for some e, M > 0. We
know that b - Du — pAu = 0, so

b-Dv, — uAvg =b-Du— uA +¢eb-(2x —Mb)—2¢eu
=¢e(2b-x — MI|b|* - 2u).
If we let ¢ > 0 be arbitrary, and pick M so large that 2b - x < M |b|? for every x €  (this
is possible since €2 is bounded), then the above is strictly negative. Hence, v, cannot have a

maximum in €2; in particular,
Ve(x) < max v,.
1]




Letting ¢ — 0 and noting that v, — u uniformly, we conclude the proof of (2).

2. (a) Find a solution formula for the initial value problem

{ut =kAu (x eR"t>0) 3)

u(x,0) = g(x) (xR

for some k > 0 and g € C(R") N L°°(R").

Recall: k is the heat conductivity, indicating how quickly heat is diffused through the
material.

(b) What would happen for negative k?

(c) Find a solution formula for the initial value problem

{ut(x,t) = k() Au(x,t) (x e R",t > 0) @

u(x,0) = g(x) (x € R?)

for a continuous function k: [0, co) — (0, 00).

Solution:

(a) Assume that u solves the equation and let v(x, t) = u(x,¢/k). Then
1 1
ve(x,t) = Fh(x,t/k) = %kAu(x,t/k) = Av(x, 1),

so v solves the heat equation with initial data v(x,0) = u(x,0) = g(x). We know that
the function

v(x, 1) = (P, 1) * g)(x) = o=y I?/41

1
= /. g(y)dy
,/ 7'[‘ n

solves the heat equation. Since u(x,?) = v(x, kt), we conclude that the function

x—yl?
u(x, 1) = =y E/4k1 ¢ () dy

1
Varkt Jrr
solves (3).

(b) If & < 0, our formula would involve the irrational term ~/47k?, and we would be in-
tegrating e to the power of |x — y|?/4|k|t, which is infinite. Thus, the formula clearly
breaks down.

To interpret this, note that the change of variables (x, ) — (x,/k) — which transforms
the equation to the standard heat equation — involves flipping the direction of time (¢
decreases instead of increases). This is an indication that solving the heat equation back-
wards in time is a bad idea.

(c) Lett:[0,00) — [0, c0) be some function, to be determined, and let v(x, t) = u(x, 7(?)).
Then

ve(x,1) = T (Ou(x,T(2) = T Ok@)Au(x, t(t)) = T (O)k(t)Av(x, ).




Thus, if /(¢) = 1/k(¢), thatis, t(¢) = C +f0t 1/k(s) ds, then v solves the standard heat
equation. Its initial data is v(x, 0) = u(x, t(0)) = u(x, C), so if we choose C = 0 then
7(0) = 0, and v(x, 0) = u(x,0) = g(x). Inverting the definition of v, we get u(x,t) =
v(x,771(t)), where t ! is the inverse of  (which we cannot compute explicitly without
knowing what k is). To conclude, we get the solution formula
—|x—y2/4c71 ()

u(x,t) = g(y)dy.

1
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3. (Problem 2.5.12 from Evans) Suppose u is smooth and solves u; = Au in R” x (0, 00).

(a) Show that u*(x, ) := u(Ax, A2t) also solves the heat equation for each A € R.

(b) Use (a) to show that v(x,?) := x - Du(x,t) + 2tu,(x, t) solves the heat equation as
well.
Hint: Compute %u’l(x, t).

Solution:

(a) We have

u;\(x,t) — Aur(x, 1) = 22u;(Ax, A%1) — A2 Au(dx, A%t) = 0.
(b) We follow the hint and get

9
aM(x, 1) = x - Du(Ax, A%t) + 2u; (Ax, A%1).

Comparing with the definition of v, we see that v = %u’l(x, t)| P Since u* solves
the heat equation for any A > 0, also its derivative with respect to A will solve the heat
equation (since we can interchange the order of differentiation). Thus, also v solves the
heat equation.

4. (Problem 2.5.14 from Evans) Write down an explicit formula for a solution of

ur+cu=Au+ f inR” x (0,00) 5)
u=g on R” x {t = 0},

where ¢ € R is a constant.

Hint: Pretend first that the Au term is not there and multiply the equation by an integrating
factor. Reduce the problem to one for which you already know the solution.

Remark. The term cu is a reaction term — it will “produce” or “remove” heat at a rate
proportional to u(x, t). For instance, u could be the temperature distribution in a reactive
chemical: The reaction produces heat, and the rate of reaction is proportional to the
temperature. The term f is a source term — it similarly “produces” or “removes” heat, but
irrespective of the value of u.



Solution: We follow the hint and multiply the PDE by the integrating factor e~¢? to get

%(u(x,t)e_c’) =e “"Au(x,t) = e f(x,1).

Define v(x,?) = u(x,t)e “". Thene=°* Au(x,t) = Av(x,t). Hence, if h(x,1) ;== e~ f(x,1),
we see that v solves the inhomogeneous heat equation

v =Av+h

with initial data v(x,0) = eu(x,0) = g(x). Duhamel’s principle yields the solution

(x,1) 1 —|x—y|?/4t ) d /t/ e_lx_y|2/4(’_s)h( Ydy d
v(x,t) = e T + —h(y,s s.
Vazit" Jrn s o JrT /4m(t —s)n g g

Finally, inserting u(x, ) = e’ v(x,?) and h(x,s) = e f(x, s), we get the formula

et ey 241 t ot S)e—|x—y\2/4(t—s)
) = /e— - g(y)dy+// e £y 5)dy ds.
A/ " R7 0 Rn
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