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1. (Maximum principle) Let � � Rn be open and bounded and consider the advection-diffusion
problem

b �Du D ��u .in �/ (1)

where b 2 Rn is a fixed vector (the velocity) and � > 0 is a given number (the diffusion
coefficient or viscosity). Prove the maximum principle

u.x/ ⩽ max
y2@�

u.y/ 8 x 2 � (2)

for any function u 2 C 2.�/ \ C. N�/ satisfying (1).

Hint: Show first that if a function v satisfies b �Dv < ��v in �, then v cannot have a
maximum in �. Then let v".x/ D u.x/C "

�
jxj2 �Mb � x/ for some M; " > 0.

Remark. Consider the time-dependent equation

vt C b �Dv D ��v (1’)

for some v D v.x; t/. If v is a stationary solution (i.e., time-independent) then vt � 0 and so
u.x/ WD v.x; 0/ will be a solution of (1). The PDE (1’) features both transport (b �Dv) and
diffusion (��v). For instance, it can model the distribution of heat v.x; t/ in a fluid which
has heat conductivity � and which moves through space with velocity b.

Solution: Assume first that v 2 C 2.�/ \ C.�/ satisfies b �Dv < ��v in �. If x0 2 � is a
maximum of v, then Dv.x0/ D 0 and �v.x0/ ⩽ 0. Thus,

0 > b �Dv.x0/ � ��v.x0/ ⩾ 0;

a contradiction.
Next, as indicated in the hint, let v".x/ D u.x/ C "

�
jxj2 �Mb � x/ for some ";M > 0. We

know that b �Du � ��u D 0, so

b �Dv" � ��v" D b �Du � ��C "b � .2x �Mb/ � 2"�

D "
�
2b � x �M jbj2 � 2�

�
:

If we let " > 0 be arbitrary, and pick M so large that 2b � x ⩽ M jbj2 for every x 2 � (this
is possible since � is bounded), then the above is strictly negative. Hence, v" cannot have a
maximum in �; in particular,

v".x/ ⩽ max
@�

v":
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Letting "! 0 and noting that v" ! u uniformly, we conclude the proof of (2).

2. (a) Find a solution formula for the initial value problem(
ut D k�u .x 2 Rn; t > 0/
u.x; 0/ D g.x/ .x 2 Rn/

(3)

for some k > 0 and g 2 C.Rn/ \ L1.Rn/.
Recall: k is the heat conductivity, indicating how quickly heat is diffused through the
material.

(b) What would happen for negative k?

(c) Find a solution formula for the initial value problem(
ut .x; t/ D k.t/�u.x; t/ .x 2 Rn; t > 0/
u.x; 0/ D g.x/ .x 2 Rn/

(4)

for a continuous function kW Œ0;1/! .0;1/.

Solution:

(a) Assume that u solves the equation and let v.x; t/ D u.x; t=k/. Then

vt .x; t/ D
1

k
ut .x; t=k/ D

1

k
k�u.x; t=k/ D �v.x; t/;

so v solves the heat equation with initial data v.x; 0/ D u.x; 0/ D g.x/. We know that
the function

v.x; t/ D
�
ˆ.�; t / � g

�
.x/ D

1
p
4�t

n

ˆ
Rn

e�jx�yj
2=4tg.y/ dy

solves the heat equation. Since u.x; t/ D v.x; kt/, we conclude that the function

u.x; t/ D
1

p
4�kt

n

ˆ
Rn

e�jx�yj
2=4ktg.y/ dy

solves (3).

(b) If k < 0, our formula would involve the irrational term
p
4�kt , and we would be in-

tegrating e to the power of jx � yj2=4jkjt , which is infinite. Thus, the formula clearly
breaks down.

To interpret this, note that the change of variables .x; t/ 7! .x; t=k/— which transforms
the equation to the standard heat equation — involves flipping the direction of time (t
decreases instead of increases). This is an indication that solving the heat equation back-
wards in time is a bad idea.

(c) Let � W Œ0;1/! Œ0;1/ be some function, to be determined, and let v.x; t/ D u.x; �.t//.
Then

vt .x; t/ D �
0.t/ut .x; �.t// D �

0.t/k.t/�u.x; �.t// D � 0.t/k.t/�v.x; t/:
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Thus, if � 0.t/ D 1=k.t/, that is, �.t/ D CC
´ t
0
1=k.s/ ds, then v solves the standard heat

equation. Its initial data is v.x; 0/ D u.x; �.0// D u.x; C /, so if we choose C D 0 then
�.0/ D 0, and v.x; 0/ D u.x; 0/ D g.x/. Inverting the definition of v, we get u.x; t/ D
v.x; ��1.t//, where ��1 is the inverse of � (which we cannot compute explicitly without
knowing what k is). To conclude, we get the solution formula

u.x; t/ D
1p

4���1.t/
n

ˆ
Rn

e�jx�yj
2=4��1.t/g.y/ dy:

3. (Problem 2.5.12 from Evans) Suppose u is smooth and solves ut D �u in Rn � .0;1/.

(a) Show that u�.x; t/ WD u.�x; �2t / also solves the heat equation for each � 2 R.

(b) Use (a) to show that v.x; t/ WD x �Du.x; t/C 2tut .x; t/ solves the heat equation as
well.
Hint: Compute @

@�
u�.x; t/.

Solution:

(a) We have

u�t .x; t/ ��u
�.x; t/ D �2ut .�x; �

2t / � �2�u.�x; �2t / D 0:

(b) We follow the hint and get

@

@�
u�.x; t/ D x �Du.�x; �2t /C 2�ut .�x; �

2t /:

Comparing with the definition of v, we see that v D @
@�
u�.x; t/

ˇ̌
�D1

. Since u� solves
the heat equation for any � > 0, also its derivative with respect to � will solve the heat
equation (since we can interchange the order of differentiation). Thus, also v solves the
heat equation.

4. (Problem 2.5.14 from Evans) Write down an explicit formula for a solution of(
ut C cu D �uC f in Rn � .0;1/
u D g on Rn � ft D 0g;

(5)

where c 2 R is a constant.

Hint: Pretend first that the �u term is not there and multiply the equation by an integrating
factor. Reduce the problem to one for which you already know the solution.

Remark. The term cu is a reaction term – it will “produce” or “remove” heat at a rate
proportional to u.x; t/. For instance, u could be the temperature distribution in a reactive
chemical: The reaction produces heat, and the rate of reaction is proportional to the
temperature. The term f is a source term – it similarly “produces” or “removes” heat, but
irrespective of the value of u.
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Solution: We follow the hint and multiply the PDE by the integrating factor e�ct to get

@

@t

�
u.x; t/e�ct

�
D e�ct�u.x; t/ D e�ctf .x; t/:

Define v.x; t/ D u.x; t/e�ct . Then e�ct�u.x; t/ D �v.x; t/. Hence, if h.x; t/ WD e�ctf .x; t/,
we see that v solves the inhomogeneous heat equation

vt D �v C h

with initial data v.x; 0/ D e0u.x; 0/ D g.x/. Duhamel’s principle yields the solution

v.x; t/ D
1

p
4�t

n

ˆ
Rn

e�jx�yj
2=4tg.y/ dy C

ˆ t

0

ˆ
Rn

e�jx�yj
2=4.t�s/p

4�.t � s/
n h.y; s/ dy ds:

Finally, inserting u.x; t/ D ectv.x; t/ and h.x; s/ D e�csf .x; s/, we get the formula

u.x; t/ D
ect
p
4�t

n

ˆ
Rn

e�jx�yj
2=4tg.y/ dy C

ˆ t

0

ˆ
Rn

ec.t�s/
e�jx�yj

2=4.t�s/p
4�.t � s/

n f .y; s/ dy ds:
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