Problem set 5
 MAT4301

Ulrik Skre Fjordholm

October 10, 2023

1. (Part of the proof of Theorem 6) Let $T, \varepsilon>0$. Show that the function

$$
w(x, t)=\frac{1}{(T+\varepsilon-t)^{n / 2}} e^{|x|^{2} / 4(T+\varepsilon-t)}
$$

satisfies the heat equation $w_{t}=\Delta w$ for $t \in(0, T], x \in \mathbb{R}^{n}$. Note that $w(x, t)$ increases very quickly as $|x| \rightarrow \infty$.
2. Consider the Cauchy problem for the heat equation

$$
\begin{cases}u_{t}=u_{x x} & \text { in } \mathbb{R} \times(0, \infty) \tag{1}\\ u(x, 0)=0 & \text { for } x \in \mathbb{R}\end{cases}
$$

Clearly, the trivial solution $u \equiv 0$ is one solution of (1), and this is also the solution we would get from the solution formula $u(t)=\Phi(\cdot, t) * u(\cdot, 0)$.
(a) Let now $\alpha>1$ and define

$$
v(x, t):=\sum_{k=0}^{\infty} \frac{g^{(k)}(t)}{(2 k)!} x^{2 k}, \quad g(t):= \begin{cases}e^{-1 / t^{\alpha}} & \text { for } t>0 \tag{2}\\ 0 & \text { for } t \leqslant 0\end{cases}
$$

where $g^{(k)}$ is the k-th derivative of g. Show - either rigorously or by doing formal computations - that v also solves (1).
(b) Explain why there are infinitely many solutions to the Cauchy problem for the heat equation. How does this fit in with our "conditional uniqueness" result (Theorem 7 in Section 2.3 of Evans)?
3. Consider a discrete random walk in one dimension: At each point $x_{i}=i \Delta x$ and $t^{n}=n \Delta t$ (where $\Delta x, \Delta t>0$ are given parameters and $i \in \mathbb{Z}, n \in \mathbb{N}_{0}$) we have a lump of particles which in the time interval $\left[t^{n}, t^{n+1}\right]$ has a probability p of moving to the left to x_{i-1}, and probability p of moving right to x_{i+1}. In particular, the probability of staying put at x_{i} is $1-2 p$, so we need $p \in[0,1 / 2]$. At time $t=0$ and for each $i \in \mathbb{Z}$, we let $u_{i}^{0} \geqslant 0$ be the amount of particles at position x_{i}.
(a) Let the distribution $\left(u_{i}^{n}\right)_{i \in \mathbb{Z}}$ at time t^{n} be given $(n \geqslant 0)$. Explain why

$$
\begin{equation*}
u_{i}^{n+1}=p u_{i-1}^{n}+(1-2 p) u_{i}^{n}+p u_{i+1}^{n} . \tag{3}
\end{equation*}
$$

(b) Derive the relation

$$
\begin{equation*}
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=k \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}} \tag{4}
\end{equation*}
$$

where $k:=p \frac{\Delta x^{2}}{\Delta t}$.
(c) Define $u_{\Delta t, \Delta x}\left(x_{i}, t^{n}\right)=u_{i}^{n}$, and extend $u_{\Delta t, \Delta x}$ to all points $(x, t) \in \mathbb{R} \times[0, \infty)$ by linear interpolation. We now wish to let $\Delta t, \Delta x \rightarrow 0$, but we have to be careful about how fast Δt goes to zero compared to Δx.
Assume that $u_{\Delta t, \Delta x}$ converges to some function u. In the following three limits, find a differential equation satisfied by u :
(i) $\Delta t, \Delta x \rightarrow 0$ such that $k:=p \frac{\Delta x^{2}}{\Delta t} \rightarrow 0$
(ii) $\Delta t, \Delta x \rightarrow 0$ such that $k:=p \frac{\Delta x^{2}}{\Delta t} \equiv$ const.
(iii) $\Delta t, \Delta x \rightarrow 0$ such that $k:=p \frac{\Delta x^{2}}{\Delta t} \rightarrow \infty$.
(d) Relate the space-time scaling $\frac{\Delta x^{2}}{\Delta t} \equiv$ const. to what you know about the symmetries of the heat equation.

Note: Answering the above problems fully rigorously requires a lot of work, so formal explanations are enough.
4. Repeat problem $\mathbf{3}$, but assume that in addition to particles jumping to neighbouring points, there is a production or destruction of particles. (For instance, the particles could be bacteria, and bacteria could die or reproduce.) More precisely, at each point x_{i} there is in the time interval $\left[t^{n}, t^{n+1}\right]$ a production $\Delta t f\left(x_{i}, t^{n}\right)$ of particles, for some function $f: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$.
5. Assume now that there is a local drift of particles at speed $b \in \mathbb{R}$. For definiteness, assume $b>0$.
(a) Explain why the new probability of moving from x_{i} to x_{i+1} in the time interval [t^{n}, t^{n+1}] is $p+\frac{\Delta t}{\Delta x} b$, the probability of moving from x_{i} to x_{i-1} is p, and the probability of staying put is $1-2 p-\frac{\Delta t}{\Delta x} b$.
(b) Repeat problem $\mathbf{3}$ for particles with drift.

