Problem set 5 - Solutions
 MAT4301

Ulrik Skre Fjordholm

October 19, 2023

1. (Part of the proof of Theorem 6) Let $T, \varepsilon>0$. Show that the function

$$
w(x, t)=\frac{1}{(T+\varepsilon-t)^{n / 2}} e^{|x|^{2} / 4(T+\varepsilon-t)}
$$

satisfies the heat equation $w_{t}=\Delta w$ for $t \in(0, T], x \in \mathbb{R}^{n}$. Note that $w(x, t)$ increases very quickly as $|x| \rightarrow \infty$.

Solution: This is a matter of direct computation. The computations will be very similar to those for the fundamental solution of the heat equation.
2. Consider the Cauchy problem for the heat equation

$$
\begin{cases}u_{t}=u_{x x} & \text { in } \mathbb{R} \times(0, \infty) \tag{1}\\ u(x, 0)=0 & \text { for } x \in \mathbb{R}\end{cases}
$$

Clearly, the trivial solution $u \equiv 0$ is one solution of (1), and this is also the solution we would get from the solution formula $u(t)=\Phi(\cdot, t) * u(\cdot, 0)$.
(a) Let now $\alpha>1$ and define

$$
v(x, t):=\sum_{k=0}^{\infty} \frac{g^{(k)}(t)}{(2 k)!} x^{2 k}, \quad g(t):= \begin{cases}e^{-1 / t^{\alpha}} & \text { for } t>0 \tag{2}\\ 0 & \text { for } t \leqslant 0\end{cases}
$$

where $g^{(k)}$ is the k-th derivative of g. Show - either rigorously or by doing formal computations - that v also solves (1).
(b) Explain why there are infinitely many solutions to the Cauchy problem for the heat equation. How does this fit in with our "conditional uniqueness" result (Theorem 7 in Section 2.3 of Evans)?

Solution:

(a) First, note that both g and all of its derivatives are bounded on $[0, \infty)$ and satisfy $\left|g^{(k)}(t)\right| \rightarrow$ 0 as $t \rightarrow 0$. Hence, $v(x, t) \rightarrow 0$ as $t \rightarrow 0$. Differentiating, we have

$$
v_{t}(x, t)=\sum_{k=0}^{\infty} \frac{g^{(k+1)}(t)}{(2 k)!} x^{2 k}
$$

and

$$
\begin{aligned}
v_{x_{i}}(x, t) & =\sum_{k=1}^{\infty} \frac{g^{(k)}(t)}{(2 k)!} 2 k x^{2 k-1}, \\
v_{x_{i} x_{i}}(x, t) & =\sum_{k=1}^{\infty} \frac{g^{(k)}(t)}{(2 k)!} 2 k(2 k-1) x^{2 k-2}=\sum_{k=1}^{\infty} \frac{g^{(k)}(t)}{(2(k-1))!} x^{2(k-1)} \\
& =\sum_{k=0}^{\infty} \frac{g^{(k+1)}(t)}{(2 k)!} x^{2 k},
\end{aligned}
$$

so $v_{t}=v_{x x}$. The above computations are admittedly formal, and one needs to study the growth of $g^{(k)}(t)$ as $k \rightarrow \infty$ to rigorously conclude that all the above series converge absolutely.
(b) If u is a solution to the heat equation with initial data $u(x, 0)=f(x)$, then the function $u(x, t)+\alpha v(x, t)$ is a solution to the same problem, for any $\alpha \in \mathbb{R}$. Thus, there are infinitely many solutions.
Since v does not satisfy the uniqueness condition $|v(x, t)| \leqslant A e^{a|x|^{2}}$, this does not contradict the uniqueness result.
3. Consider a discrete random walk in one dimension: At each point $x_{i}=i \Delta x$ and $t^{n}=n \Delta t$ (where $\Delta x, \Delta t>0$ are given parameters and $i \in \mathbb{Z}, n \in \mathbb{N}_{0}$) we have a lump of particles which in the time interval $\left[t^{n}, t^{n+1}\right]$ has a probability p of moving to the left to x_{i-1}, and probability p of moving right to x_{i+1}. In particular, the probability of staying put at x_{i} is $1-2 p$, so we need $p \in[0,1 / 2]$. At time $t=0$ and for each $i \in \mathbb{Z}$, we let $u_{i}^{0} \geqslant 0$ be the amount of particles at position x_{i}.
(a) Let the distribution $\left(u_{i}^{n}\right)_{i \in \mathbb{Z}}$ at time t^{n} be given $(n \geqslant 0)$. Explain why

$$
\begin{equation*}
u_{i}^{n+1}=p u_{i-1}^{n}+(1-2 p) u_{i}^{n}+p u_{i+1}^{n} . \tag{3}
\end{equation*}
$$

(b) Derive the relation

$$
\begin{equation*}
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=k \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}} \tag{4}
\end{equation*}
$$

where $k:=p \frac{\Delta x^{2}}{\Delta t}$.
(c) Define $u_{\Delta t, \Delta x}\left(x_{i}, t^{n}\right)=u_{i}^{n}$, and extend $u_{\Delta t, \Delta x}$ to all points $(x, t) \in \mathbb{R} \times[0, \infty)$ by linear interpolation. We now wish to let $\Delta t, \Delta x \rightarrow 0$, but we have to be careful about how fast Δt goes to zero compared to Δx.
Assume that $u_{\Delta t, \Delta x}$ converges to some function u. In the following three limits, find a differential equation satisfied by u :
(i) $\Delta t, \Delta x \rightarrow 0$ such that $k:=p \frac{\Delta x^{2}}{\Delta t} \rightarrow 0$
(ii) $\Delta t, \Delta x \rightarrow 0$ such that $k:=p \frac{\Delta x^{2}}{\Delta t} \equiv$ const.
(iii) $\Delta t, \Delta x \rightarrow 0$ such that $k:=p \frac{\Delta x^{2}}{\Delta t} \rightarrow \infty$.
(d) Relate the space-time scaling $\frac{\Delta x^{2}}{\Delta t} \equiv$ const. to what you know about the symmetries of the heat equation.

Note: Answering the above problems fully rigorously requires a lot of work, so formal explanations are enough.

Solution:

(a) A particle at position i can jump to $i-1$, jump to $i+1$, or stay at i. The probabilities of these are p, p and $1-2 p$, respectively. Thus, at the next timestep t^{n+1}, there will be $p u_{i-1}^{n}$ particles coming from $i-1$ to i, $p u_{i+1}^{n}$ particles coming from $i+1$, and $(1-2 p) u_{i}^{n}$ particles staying at i. Once added up, we get (3).
(b) This is a simple reordering of (3).
(c) Note first that for fixed (x, t), if i, n are such that $x_{i}=x$ and $t^{n}=t$, then $\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t} \rightarrow$ $u_{t}(x, t)$ and $\frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}} \rightarrow u_{x x}(x, t)$ as $\Delta t, \Delta x \rightarrow 0$.
(i) If $k \rightarrow 0$ as $\Delta t, \Delta x \rightarrow 0$ then the limit satisfies $u_{t}(x, t)=0$ for all x, t, that is, $u(x, t)=u_{0}(x)$ for all x, t.
(ii) If $k \equiv$ const. then the limit satisfies $u_{t}=k u_{x x}$.
(iii) If $k \rightarrow \infty$ then, dividing (4) by k shows that $u_{x x}(x, t)=0$ for all x, t.
(d) We know that if u solves the heat equation then so does $u^{\lambda}(x, t):=u\left(\lambda x, \lambda^{2} t\right)$. Letting $\lambda \rightarrow 0$ is akin to "zooming in" on u and observing finer details of u. Thus, the "correct" way of zooming in on a solution to the heat equation is by scaling time by λ^{2} when scaling space by a factor λ.
Similarly, in (4), letting $\Delta x, \Delta t \rightarrow 0$ is akin to observing finer details of u (by computing a better approximation). If we set $\Delta x=\lambda$, then the scaling $p \frac{\Delta x^{2}}{\Delta t} \equiv$ const. is equivalent to stating that $\Delta t=c \lambda^{2}$ for some constant $c>0$. Thus, just as for the heat equation, we scale time by λ^{2} whenever we scale space by a factor λ.
4. Repeat problem 3, but assume that in addition to particles jumping to neighbouring points, there is a production or destruction of particles. (For instance, the particles could be bacteria, and bacteria could die or reproduce.) More precisely, at each point x_{i} there is in the time interval $\left[t^{n}, t^{n+1}\right]$ a production $\Delta t f\left(x_{i}, t^{n}\right)$ of particles, for some function $f: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$.

Solution:

(a) At position i, from time n to time $n+1$, we now have an amount $p u_{i-1}^{n}$ coming from $i-1$, an amount $p u_{i+1}^{n}$ coming from $i+1$, an amount $(1-2 p) u_{i}^{n}$ staying at i, and a production $\Delta t f\left(x_{i}, t^{n}\right)$ of new particles. Thus,

$$
u_{i}^{n+1}=p u_{i-1}^{n}+(1-2 p) u_{i}^{n}+p u_{i+1}^{n}+\Delta t f\left(x_{i}, t^{n}\right) .
$$

(b) Rearranging gives

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=k \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}+f\left(x_{i}, t^{n}\right)
$$

where $k:=p \frac{\Delta x^{2}}{\Delta t}$.
(c) In the three limits we get
(i) $u_{t}=f$
(ii) $u_{t}=k u_{x x}+f$
(iii) $u_{x x}=0$
5. Assume now that there is a local drift of particles at speed $b \in \mathbb{R}$. For definiteness, assume $b>0$.
(a) Explain why the new probability of moving from x_{i} to x_{i+1} in the time interval $\left[t^{n}, t^{n+1}\right]$ is $p+\frac{\Delta t}{\Delta x} b$, the probability of moving from x_{i} to x_{i-1} is p, and the probability of staying put is $1-2 p-\frac{\Delta t}{\Delta x} b$.
(b) Repeat problem $\mathbf{3}$ for particles with drift.

Solution:

(a) In a time interval of length Δt, the particles at x_{i} on average move a distance $\Delta t b$, which is a fraction of $\frac{\Delta t}{\Delta x} b$ of the distance between x_{i} and x_{i+1}. (The particles move to the right, not to the left.) In this way we can say that an amount of $\frac{\Delta t}{\Delta x} b u_{i}^{n}$ particles move from x_{i} to x_{i+1} in the time interval $\left[t^{n}, t^{n+1}\right]$. The probability of moving from x_{i} to x_{i-1} is still p (none of the particles can go left due to drift, since $b>0$), and then there is a fraction of $1-2 p-\frac{\Delta t}{\Delta x} b$ left.
(b) We get

$$
u_{i}^{n+1}=\left(p+b \frac{\Delta t}{\Delta x} b\right) u_{i-1}^{n}+\left(1-2 p-\frac{\Delta t}{\Delta x} b\right) u_{i}^{n}+p u_{i+1}^{n}
$$

which can be rearranged as

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+b \frac{u_{i}^{n}-u_{i-1}^{n}}{\Delta x}=k \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}
$$

In the three limits we get
(i) $u_{t}+b u_{x}=0$
(ii) $u_{t}+b u_{x}=k u_{x x}$
(iii) $u_{x x}=0$

