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1. (Part of the proof of Theorem 6) Let T; " > 0. Show that the function

w.x; t/ D
1

.T C " � t /n=2
ejxj

2=4.TC"�t/

satisfies the heat equation wt D �w for t 2 .0; T �, x 2 Rn. Note that w.x; t/ increases very
quickly as jxj ! 1.

Solution: This is a matter of direct computation. The computations will be very similar to
those for the fundamental solution of the heat equation.

2. Consider the Cauchy problem for the heat equation(
ut D uxx in R � .0;1/
u.x; 0/ D 0 for x 2 R:

(1)

Clearly, the trivial solution u � 0 is one solution of (1), and this is also the solution we
would get from the solution formula u.t/ D ˆ.�; t / � u.�; 0/.

(a) Let now ˛ > 1 and define

v.x; t/ WD

1X
kD0

g.k/.t/

.2k/Š
x2k ; g.t/ WD

(
e�1=t

˛
for t > 0

0 for t ⩽ 0
(2)

where g.k/ is the k-th derivative of g. Show – either rigorously or by doing formal
computations – that v also solves (1).

(b) Explain why there are infinitely many solutions to the Cauchy problem for the heat
equation. How does this fit in with our “conditional uniqueness” result (Theorem 7 in
Section 2.3 of Evans)?

Solution:

(a) First, note that both g and all of its derivatives are bounded on Œ0;1/ and satisfy jg.k/.t/j !
0 as t ! 0. Hence, v.x; t/! 0 as t ! 0. Differentiating, we have

vt .x; t/ D

1X
kD0

g.kC1/.t/

.2k/Š
x2k
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and

vxi .x; t/ D

1X
kD1

g.k/.t/

.2k/Š
2kx2k�1;

vxixi .x; t/ D

1X
kD1

g.k/.t/

.2k/Š
2k.2k � 1/x2k�2 D

1X
kD1

g.k/.t/

.2.k � 1//Š
x2.k�1/

D

1X
kD0

g.kC1/.t/

.2k/Š
x2k ;

so vt D vxx . The above computations are admittedly formal, and one needs to study the
growth of g.k/.t/ as k ! 1 to rigorously conclude that all the above series converge
absolutely.

(b) If u is a solution to the heat equation with initial data u.x; 0/ D f .x/, then the function
u.x; t/ C ˛v.x; t/ is a solution to the same problem, for any ˛ 2 R. Thus, there are
infinitely many solutions.

Since v does not satisfy the uniqueness condition jv.x; t/j ⩽ Aeajxj
2
, this does not

contradict the uniqueness result.

3. Consider a discrete random walk in one dimension: At each point xi D i�x and tn D n�t
(where �x;�t > 0 are given parameters and i 2 Z, n 2 N0) we have a lump of particles
which in the time interval Œtn; tnC1� has a probability p of moving to the left to xi�1, and
probability p of moving right to xiC1. In particular, the probability of staying put at xi is
1 � 2p, so we need p 2 Œ0; 1=2�. At time t D 0 and for each i 2 Z, we let u0i ⩾ 0 be the
amount of particles at position xi .

(a) Let the distribution .uni /i2Z at time tn be given (n ⩾ 0). Explain why

unC1i D puni�1 C .1 � 2p/u
n
i C pu

n
iC1: (3)

(b) Derive the relation
unC1i � uni

�t
D k

uniC1 � 2u
n
i C u

n
i�1

�x2
(4)

where k WD p�x
2

�t
.

(c) Define u�t;�x.xi ; tn/ D uni , and extend u�t;�x to all points .x; t/ 2 R � Œ0;1/ by
linear interpolation. We now wish to let �t;�x ! 0, but we have to be careful about
how fast �t goes to zero compared to �x.
Assume that u�t;�x converges to some function u. In the following three limits, find a
differential equation satisfied by u:

(i) �t;�x ! 0 such that k WD p�x
2

�t
! 0

(ii) �t;�x ! 0 such that k WD p�x
2

�t
� const.

(iii) �t;�x ! 0 such that k WD p�x
2

�t
!1.

(d) Relate the space-time scaling �x2

�t
� const. to what you know about the symmetries of

the heat equation.

Note: Answering the above problems fully rigorously requires a lot of work, so formal
explanations are enough.
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Solution:

(a) A particle at position i can jump to i � 1, jump to i C 1, or stay at i . The probabilities
of these are p, p and 1 � 2p, respectively. Thus, at the next timestep tnC1, there will
be puni�1 particles coming from i � 1 to i , puniC1 particles coming from i C 1, and
.1 � 2p/uni particles staying at i . Once added up, we get (3).

(b) This is a simple reordering of (3).

(c) Note first that for fixed .x; t/, if i; n are such that xi D x and tn D t , then u
nC1
i
�un
i

�t
!

ut .x; t/ and
un
iC1
�2un

i
Cun

i�1

�x2
! uxx.x; t/ as �t;�x ! 0.

(i) If k ! 0 as �t;�x ! 0 then the limit satisfies ut .x; t/ D 0 for all x; t , that is,
u.x; t/ D u0.x/ for all x; t .

(ii) If k � const. then the limit satisfies ut D kuxx .

(iii) If k !1 then, dividing (4) by k shows that uxx.x; t/ D 0 for all x; t .

(d) We know that if u solves the heat equation then so does u�.x; t/ WD u.�x; �2t /. Letting
�! 0 is akin to “zooming in” on u and observing finer details of u. Thus, the “correct”
way of zooming in on a solution to the heat equation is by scaling time by �2 when
scaling space by a factor �.

Similarly, in (4), letting�x;�t ! 0 is akin to observing finer details of u (by computing
a better approximation). If we set�x D �, then the scaling p�x

2

�t
� const. is equivalent

to stating that�t D c�2 for some constant c > 0. Thus, just as for the heat equation, we
scale time by �2 whenever we scale space by a factor �.

4. Repeat problem 3, but assume that in addition to particles jumping to neighbouring points,
there is a production or destruction of particles. (For instance, the particles could be bacteria,
and bacteria could die or reproduce.) More precisely, at each point xi there is in the time
interval Œtn; tnC1� a production �tf .xi ; tn/ of particles, for some function
f WR � Œ0;1/! R.

Solution:

(a) At position i , from time n to time n C 1, we now have an amount puni�1 coming from
i � 1, an amount puniC1 coming from i C 1, an amount .1 � 2p/uni staying at i , and a
production �tf .xi ; tn/ of new particles. Thus,

unC1i D puni�1 C .1 � 2p/u
n
i C pu

n
iC1 C�tf .xi ; t

n/:

(b) Rearranging gives

unC1i � uni
�t

D k
uniC1 � 2u

n
i C u

n
i�1

�x2
C f .xi ; t

n/

where k WD p�x
2

�t
.

(c) In the three limits we get
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(i) ut D f

(ii) ut D kuxx C f

(iii) uxx D 0

5. Assume now that there is a local drift of particles at speed b 2 R. For definiteness, assume
b > 0.

(a) Explain why the new probability of moving from xi to xiC1 in the time interval
Œtn; tnC1� is p C �t

�x
b, the probability of moving from xi to xi�1 is p, and the

probability of staying put is 1 � 2p � �t
�x
b.

(b) Repeat problem 3 for particles with drift.

Solution:

(a) In a time interval of length�t , the particles at xi on average move a distance�tb, which
is a fraction of �t

�x
b of the distance between xi and xiC1. (The particles move to the right,

not to the left.) In this way we can say that an amount of �t
�x
buni particles move from xi

to xiC1 in the time interval Œtn; tnC1�. The probability of moving from xi to xi�1 is still
p (none of the particles can go left due to drift, since b > 0), and then there is a fraction
of 1 � 2p � �t

�x
b left.

(b) We get

unC1i D .p C b �t
�x
b/uni�1 C .1 � 2p �

�t
�x
b/uni C pu

n
iC1

which can be rearranged as

unC1i � uni
�t

C b
uni � u

n
i�1

�x
D k

uniC1 � 2u
n
i C u

n
i�1

�x2
:

In the three limits we get

(i) ut C bux D 0

(ii) ut C bux D kuxx
(iii) uxx D 0
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