Problem set 5 — Solutions
MAT4301

Ulrik Skre Fjordholm
October 19, 2023

1. (Part of the proof of Theorem 6) Let T, e > 0. Show that the function

1 olX2/4(T +e—1)
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satisfies the heat equation w; = Aw fort € (0, 7], x € R". Note that w(x, t) increases very
quickly as |x| — oo.

Solution: This is a matter of direct computation. The computations will be very similar to
those for the fundamental solution of the heat equation.

2. Consider the Cauchy problem for the heat equation

Uy = Uxx in R x (0, 00) 0
u(x,0) =0 forx eR.
Clearly, the trivial solution u = 0 is one solution of (1), and this is also the solution we
would get from the solution formula u () = ®(-,7) * u(:,0).
(a) Letnow o > 1 and define
(x.1) = Z g 2k ) e V1% fort >0 @
v(x,1) = , =
2)! £ 0 fort <0

where g®) is the k-th derivative of g. Show — either rigorously or by doing formal
computations — that v also solves (1).

(b) Explain why there are infinitely many solutions to the Cauchy problem for the heat
equation. How does this fit in with our “conditional uniqueness” result (Theorem 7 in
Section 2.3 of Evans)?

Solution:

(a) First, note that both g and all of its derivatives are bounded on [0, c0) and satisfy |g® (7)| —|
0 ast — 0. Hence, v(x,t) — 0 as t — 0. Differentiating, we have
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SO Uy = Uyxx. The above computations are admittedly formal, and one needs to study the
growth of g®)(¢) as k — oo to rigorously conclude that all the above series converge
absolutely.

(b) If u is a solution to the heat equation with initial data u(x,0) = f(x), then the function
u(x,t) + av(x,t) is a solution to the same problem, for any « € R. Thus, there are
infinitely many solutions.
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Since v does not satisfy the uniqueness condition |v(x,7)| < Ae®™I", this does not
contradict the uniqueness result.

. Consider a discrete random walk in one dimension: At each point x; = i Ax and " = nAt
(where Ax, At > 0 are given parameters and i € Z, n € Ny) we have a lump of particles
which in the time interval [t", "] has a probability p of moving to the left to x;_1, and
probability p of moving right to x; ;. In particular, the probability of staying put at x; is
1—2p,soweneed p € [0,1/2]. Attime 7 = 0 and for each i € Z, we let u? > 0 be the
amount of particles at position Xx;.

(a) Let the distribution (47 );ez at time ¢” be given (n > 0). Explain why
ulth = pul_ 4+ (1 —2pul + pul',,. Q)

(b) Derive the relation
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At Ax?
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where k = pAA—xlz.

(c) Define uas ax(x;,t") = u?, and extend u s, ax to all points (x,7) € R x [0, oo) by
linear interpolation. We now wish to let Af, Ax — 0, but we have to be careful about
how fast At goes to zero compared to Ax.

Assume that u a; Ax converges to some function u. In the following three limits, find a
differential equation satisfied by u:

(i) At,Ax — Osuchthatk := pAA—"t2 -0
(ii) At, Ax — Osuchthatk := pA—)62 = const.
(iii) At, Ax — Osuchthat k := p— — 00.

(d) Relate the space-time scahng T = const. to what you know about the symmetries of
the heat equation.

Note: Answering the above problems fully rigorously requires a lot of work, so formal
explanations are enough.



Solution:

(a) A particle at position i can jump to i — 1, jump to i + 1, or stay at i. The probabilities
of these are p, p and 1 — 2p, respectively. Thus, at the next timestep "+, there will
be puj_, particles coming from i — 1 to i, puj,, particles coming from i + 1, and
(1 —2p)u? particles staying at i. Once added up, we get (3).

(b) This is a simple reordering of (3).

n+1_ n
(c) Note first that for fixed (x, ?), if i, n are such that x; = x and t” = ¢, then it il BN

At
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— Uxx(x,1) as At,Ax — 0.

(1) If k — 0 as Atr, Ax — 0 then the limit satisfies u,(x,¢) = 0 for all x, ¢, that is,
u(x,t) = up(x) for all x, ¢.

(ii) If k = const. then the limit satisfies u; = k.

(iii) If K — oo then, dividing (4) by k shows that u(x,?) = 0 for all x, ¢.

(d) We know that if u solves the heat equation then so does u” (x, t) := u(Ax, At). Letting
A — 0is akin to “zooming in” on u and observing finer details of u. Thus, the “correct”
way of zooming in on a solution to the heat equation is by scaling time by A? when
scaling space by a factor A.

Similarly, in (4), letting Ax, At — 01is akin to observing finer details of u (by computing
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a better approximation). If we set Ax = A, then the scaling p% = const. is equivalent
to stating that Az = ¢A? for some constant ¢ > 0. Thus, just as for the heat equation, we
scale time by A2 whenever we scale space by a factor A.

4. Repeat problem 3, but assume that in addition to particles jumping to neighbouring points,
there is a production or destruction of particles. (For instance, the particles could be bacteria,
and bacteria could die or reproduce.) More precisely, at each point x; there is in the time
interval [t", t*T1] a production At f(x;,t™) of particles, for some function
f:Rx[0,00) > R.

Solution:

(a) At position i, from time 7 to time n + 1, we now have an amount pu}_, coming from
i — 1, an amount puj, , coming from i + 1, an amount (1 — 2p)u} staying at i, and a
production At f(x;, t") of new particles. Thus,

witt = pul_ + (1 =2p)uf + puly, + At f(xi,t").

(b) Rearranging gives

2
where k = p%.

(c) In the three limits we get




) ur=f
() uy = kuxy + f

(ifi) uxy =0

5. Assume now that there is a local drift of particles at speed b € R. For definiteness, assume
b>0.

(a) Explain why the new probability of moving from X; to x;4; in the time interval
[t t" 1] is p + ﬁ—;b, the probability of moving from x; to x;_; is p, and the
probability of staying putis 1 —2p — %b.

(b) Repeat problem 3 for particles with drift.

Solution:

(a) In atime interval of length Az, the particles at x; on average move a distance At¢b, which
is a fraction of %b of the distance between x; and x; 4. (The particles move to the right,
not to the left.) In this way we can say that an amount of %bu? particles move from Xx;
to x; 41 in the time interval [¢"*, " *1]. The probability of moving from x; to x;_ is still
p (none of the particles can go left due to drift, since » > 0), and then there is a fraction
of 1 —2p — &Lp Jeft.

(b) We get
ul Tt = (p+bRLbWUI, + (1 —2p — RLb] + puly,
which can be rearranged as
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In the three limits we get
G) us +buy, =0
(1) u; + buy = kuyy

(iii) Uxx =0




