Problem set 5 – Solutions MAT4301

Ulrik Skre Fjordholm

October 19, 2023

1. (*Part of the proof of Theorem 6*) Let $T, \varepsilon > 0$. Show that the function

$$w(x,t) = \frac{1}{(T+\varepsilon-t)^{n/2}} e^{|x|^2/4(T+\varepsilon-t)}$$

satisfies the heat equation $w_t = \Delta w$ for $t \in (0, T]$, $x \in \mathbb{R}^n$. Note that w(x, t) increases very quickly as $|x| \to \infty$.

Solution: This is a matter of direct computation. The computations will be very similar to those for the fundamental solution of the heat equation.

2. Consider the Cauchy problem for the heat equation

$$\begin{cases} u_t = u_{xx} & \text{ in } \mathbb{R} \times (0, \infty) \\ u(x, 0) = 0 & \text{ for } x \in \mathbb{R}. \end{cases}$$
(1)

Clearly, the trivial solution $u \equiv 0$ is one solution of (1), and this is also the solution we would get from the solution formula $u(t) = \Phi(\cdot, t) * u(\cdot, 0)$.

(a) Let now $\alpha > 1$ and define

$$v(x,t) := \sum_{k=0}^{\infty} \frac{g^{(k)}(t)}{(2k)!} x^{2k}, \qquad g(t) := \begin{cases} e^{-1/t^{\alpha}} & \text{for } t > 0\\ 0 & \text{for } t \leqslant 0 \end{cases}$$
(2)

where $g^{(k)}$ is the *k*-th derivative of *g*. Show – either rigorously or by doing formal computations – that *v* also solves (1).

(b) Explain why there are infinitely many solutions to the Cauchy problem for the heat equation. How does this fit in with our "conditional uniqueness" result (Theorem 7 in Section 2.3 of Evans)?

Solution:

(a) First, note that both g and all of its derivatives are bounded on $[0, \infty)$ and satisfy $|g^{(k)}(t)| \rightarrow 0$ as $t \rightarrow 0$. Hence, $v(x, t) \rightarrow 0$ as $t \rightarrow 0$. Differentiating, we have

$$v_t(x,t) = \sum_{k=0}^{\infty} \frac{g^{(k+1)}(t)}{(2k)!} x^{2k}$$

and

$$\begin{aligned} v_{x_i}(x,t) &= \sum_{k=1}^{\infty} \frac{g^{(k)}(t)}{(2k)!} 2kx^{2k-1}, \\ v_{x_ix_i}(x,t) &= \sum_{k=1}^{\infty} \frac{g^{(k)}(t)}{(2k)!} 2k(2k-1)x^{2k-2} = \sum_{k=1}^{\infty} \frac{g^{(k)}(t)}{(2(k-1))!} x^{2(k-1)} \\ &= \sum_{k=0}^{\infty} \frac{g^{(k+1)}(t)}{(2k)!} x^{2k}, \end{aligned}$$

so $v_t = v_{xx}$. The above computations are admittedly formal, and one needs to study the growth of $g^{(k)}(t)$ as $k \to \infty$ to rigorously conclude that all the above series converge absolutely.

(b) If u is a solution to the heat equation with initial data u(x, 0) = f(x), then the function $u(x, t) + \alpha v(x, t)$ is a solution to the same problem, for any $\alpha \in \mathbb{R}$. Thus, there are infinitely many solutions.

Since v does not satisfy the uniqueness condition $|v(x,t)| \leq Ae^{a|x|^2}$, this does not contradict the uniqueness result.

- **3.** Consider a *discrete random walk* in one dimension: At each point $x_i = i \Delta x$ and $t^n = n \Delta t$ (where $\Delta x, \Delta t > 0$ are given parameters and $i \in \mathbb{Z}, n \in \mathbb{N}_0$) we have a lump of particles which in the time interval $[t^n, t^{n+1}]$ has a probability p of moving to the left to x_{i-1} , and probability p of moving right to x_{i+1} . In particular, the probability of staying put at x_i is 1 2p, so we need $p \in [0, 1/2]$. At time t = 0 and for each $i \in \mathbb{Z}$, we let $u_i^0 \ge 0$ be the amount of particles at position x_i .
 - (a) Let the distribution $(u_i^n)_{i \in \mathbb{Z}}$ at time t^n be given $(n \ge 0)$. Explain why

$$u_i^{n+1} = pu_{i-1}^n + (1-2p)u_i^n + pu_{i+1}^n.$$
(3)

(b) Derive the relation

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = k \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}$$
(4)

where $k := p \frac{\Delta x^2}{\Delta t}$.

(c) Define $u_{\Delta t,\Delta x}(x_i, t^n) = u_i^n$, and extend $u_{\Delta t,\Delta x}$ to all points $(x, t) \in \mathbb{R} \times [0, \infty)$ by linear interpolation. We now wish to let $\Delta t, \Delta x \to 0$, but we have to be careful about how fast Δt goes to zero compared to Δx .

Assume that $u_{\Delta t,\Delta x}$ converges to some function u. In the following three limits, find a differential equation satisfied by u:

- (i) $\Delta t, \Delta x \to 0$ such that $k := p \frac{\Delta x^2}{\Delta t} \to 0$
- (ii) $\Delta t, \Delta x \to 0$ such that $k := p \frac{\Delta x^2}{\Delta t} \equiv \text{const.}$
- (iii) $\Delta t, \Delta x \to 0$ such that $k := p \frac{\Delta x^2}{\Delta t} \to \infty$.
- (d) Relate the space-time scaling $\frac{\Delta x^2}{\Delta t} \equiv \text{const.}$ to what you know about the symmetries of the heat equation.

Note: Answering the above problems fully rigorously requires a lot of work, so formal explanations are enough.

Solution:

- (a) A particle at position *i* can jump to i 1, jump to i + 1, or stay at *i*. The probabilities of these are *p*, *p* and 1 2p, respectively. Thus, at the next timestep t^{n+1} , there will be pu_{i-1}^n particles coming from i 1 to *i*, pu_{i+1}^n particles coming from i + 1, and $(1 2p)u_i^n$ particles staying at *i*. Once added up, we get (3).
- (b) This is a simple reordering of (3).
- (c) Note first that for fixed (x, t), if i, n are such that $x_i = x$ and $t^n = t$, then $\frac{u_i^{n+1} u_i^n}{\Delta t} \rightarrow u_t(x, t)$ and $\frac{u_{i+1}^n 2u_i^n + u_{i-1}^n}{\Delta x^2} \rightarrow u_{xx}(x, t)$ as $\Delta t, \Delta x \rightarrow 0$.
 - (i) If $k \to 0$ as $\Delta t, \Delta x \to 0$ then the limit satisfies $u_t(x, t) = 0$ for all x, t, that is, $u(x, t) = u_0(x)$ for all x, t.
 - (ii) If $k \equiv \text{const.}$ then the limit satisfies $u_t = k u_{xx}$.
 - (iii) If $k \to \infty$ then, dividing (4) by k shows that $u_{xx}(x,t) = 0$ for all x, t.
- (d) We know that if u solves the heat equation then so does u^λ(x, t) := u(λx, λ²t). Letting λ → 0 is akin to "zooming in" on u and observing finer details of u. Thus, the "correct" way of zooming in on a solution to the heat equation is by scaling time by λ² when scaling space by a factor λ.

Similarly, in (4), letting Δx , $\Delta t \to 0$ is akin to observing finer details of u (by computing a better approximation). If we set $\Delta x = \lambda$, then the scaling $p \frac{\Delta x^2}{\Delta t} \equiv \text{const.}$ is equivalent to stating that $\Delta t = c\lambda^2$ for some constant c > 0. Thus, just as for the heat equation, we scale time by λ^2 whenever we scale space by a factor λ .

4. Repeat problem **3**, but assume that in addition to particles jumping to neighbouring points, there is a production or destruction of particles. (For instance, the particles could be bacteria, and bacteria could die or reproduce.) More precisely, at each point x_i there is in the time interval $[t^n, t^{n+1}]$ a production $\Delta t f(x_i, t^n)$ of particles, for some function $f: \mathbb{R} \times [0, \infty) \to \mathbb{R}$.

Solution:

(a) At position *i*, from time *n* to time n + 1, we now have an amount pu_{i-1}^n coming from i - 1, an amount pu_{i+1}^n coming from i + 1, an amount $(1 - 2p)u_i^n$ staying at *i*, and a production $\Delta t f(x_i, t^n)$ of new particles. Thus,

$$u_i^{n+1} = pu_{i-1}^n + (1-2p)u_i^n + pu_{i+1}^n + \Delta t f(x_i, t^n).$$

(b) Rearranging gives

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = k \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} + f(x_i, t^n)$$

where $k := p \frac{\Delta x^2}{\Delta t}$.

(c) In the three limits we get

(i) $u_t = f$ (ii) $u_t = ku_{xx} + f$ (iii) $u_{xx} = 0$

- **5.** Assume now that there is a local *drift* of particles at speed $b \in \mathbb{R}$. For definiteness, assume b > 0.
 - (a) Explain why the new probability of moving from x_i to x_{i+1} in the time interval $[t^n, t^{n+1}]$ is $p + \frac{\Delta t}{\Delta x}b$, the probability of moving from x_i to x_{i-1} is p, and the probability of staying put is $1 2p \frac{\Delta t}{\Delta x}b$.
 - (b) Repeat problem **3** for particles with drift.

Solution:

- (a) In a time interval of length Δt , the particles at x_i on average move a distance Δtb , which is a fraction of $\frac{\Delta t}{\Delta x}b$ of the distance between x_i and x_{i+1} . (The particles move to the right, not to the left.) In this way we can say that an amount of $\frac{\Delta t}{\Delta x}bu_i^n$ particles move from x_i to x_{i+1} in the time interval $[t^n, t^{n+1}]$. The probability of moving from x_i to x_{i-1} is still p (none of the particles can go left due to drift, since b > 0), and then there is a fraction of $1 - 2p - \frac{\Delta t}{\Delta x}b$ left.
- (b) We get

$$u_i^{n+1} = (p + b\frac{\Delta t}{\Delta x}b)u_{i-1}^n + (1 - 2p - \frac{\Delta t}{\Delta x}b)u_i^n + pu_{i+1}^n$$

which can be rearranged as

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + b \frac{u_i^n - u_{i-1}^n}{\Delta x} = k \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}.$$

In the three limits we get

(i) $u_t + bu_x = 0$ (ii) $u_t + bu_x = ku_{xx}$ (iii) $u_{xx} = 0$