Problem set 6
 MAT4301

Ulrik Skre Fjordholm

October 19, 2023

1. (a) Write down d'Alembert's formula for the solution of the one-dimensional wave equation with wave speed $c>0$,

$$
\left\{\begin{array}{l}
u_{t t}=c^{2} u_{x x} \quad(x \in \mathbb{R}, t>0) \tag{1}\\
u(x, 0)=g(x) \\
u_{t}(x, 0)=h(x)
\end{array}\right.
$$

Draw the backwards wave cone from a point $(x, t) \in \mathbb{R} \times \mathbb{R}_{+}$.
Remark. The backwards wave cone at (x, t) is the set of points (y, s) with $s<t$ such that the solution at (x, t) depends on the solution at (y, s).
(b) Solve (1) when $c=1, g(x)=\sin (x), h(x)=\cos (2 x)$.
2. Consider the one-dimensional wave equation on \mathbb{R}_{+}with Neumann boundary condition,

$$
\begin{cases}u_{t t}=c^{2} u_{x x} & (x>0, t>0) \tag{2}\\ u(x, 0)=g(x) & (x>0) \\ u_{t}(x, 0)=h(x) & (x>0) \\ u_{x}(0, t)=0 & (t>0)\end{cases}
$$

Where g, h are given C^{1} functions satisfying $g^{\prime}(0)=h^{\prime}(0)=0$.
(a) Find a solution formula for (2).

Hint: See [p. 69, Evans]. Make an even reflection.
(b) Make a physical interpretation of the boundary condition and of your solution formula.
3. In this problem we generalize Duhamel's principle to higher-order time-dependent equations. Consider the following second-order linear differential equation: Find $u:[0, \infty) \rightarrow X$ satisfying

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=L_{0} u(t)+L_{1} u^{\prime}(t)+f(t) \quad(t>0) \tag{3}\\
u(0)=u_{0} \\
u^{\prime}(0)=u_{1}
\end{array}\right.
$$

for some given inhomogeneity $f:(0, \infty) \rightarrow X$, initial data $u_{0}, u_{1} \in X$, linear operators $L_{0}, L_{1}: X \rightarrow X$, and where X is some vector space (you can put $X=\mathbb{R}$ for simplicity). Assume that you are able to solve the corresponding homogeneous problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=L_{0} u(t)+L_{1} u^{\prime}(t) \quad(t>0) \tag{4}\\
u(0)=u_{0} \\
u^{\prime}(0)=u_{1}
\end{array}\right.
$$

and denote the solution by $\varphi\left(t ; u_{0}, u_{1}\right)$ (so that the function $u(t)=\varphi\left(t ; u_{0}, u_{1}\right)$ solves (4)).
(a) Show that u defined by

$$
\begin{equation*}
u(t):=\int_{0}^{t} \varphi(t-s ; 0, f(s)) d s \tag{5}
\end{equation*}
$$

solves the inhomogeneous problem (3) with initial data $u_{0}=u_{1}=0$.
(b) Which step of your computation would fail if the operators L_{0}, L_{1} were nonlinear?
(c) Deduce a formula for the solution of the general problem (3).
(d) Generalize Duhamel's principle to the general k-th order linear equation

$$
\begin{cases}u^{(k)}(t)=\sum_{j=0}^{k-1} L_{j} u^{(j)}(t)+f(t) & (t>0) \tag{6}\\ u^{(j)}(0)=u_{j} & (j=0, \ldots, k-1)\end{cases}
$$

where $u^{(j)}$ (for $j=0,1, \ldots, k$) are derivatives of u, and L_{j} are linear operators from X to X.

