MAT4360 - Fall 2017 - Exercises for Monday 06.11

Exercise 27.

Let (X, \mathcal{B}, μ) denote a finite measure space. For p = 2 (resp. $p = \infty$), we consider elements of $\mathcal{L}^p(\mu)$ as equivalence classes of the form $[\xi]$ (resp. [f]), where ξ (resp. f) is a \mathcal{B} -measurable complex function on X such that $\int_X |\xi|^2 d\mu < \infty$ (resp. such that f is essentially bounded); so $[\xi]$ (resp. [f]) consists of all \mathcal{B} -measurable complex functions on X agreeing with ξ (resp. f) μ -almost everywhere.

As known from previous courses, $\mathcal{L}^2(\mu)$ is a Hilbert space, while $\mathcal{L}^{\infty}(\mu)$ is a Banach space. One easily checks that $\mathcal{L}^{\infty}(\mu)$ is an abelian C^* -algebra w.r.t. to the natural operations $[f] \cdot [g] = [fg]$ and $[f]^* = [\overline{f}]$.

a) Let the map $M : \mathcal{L}^{\infty}(\mu) \to \mathcal{B}(\mathcal{L}^{2}(\mu))$ be given by $M(f)[\xi] = [f\xi]$ for $f \in \mathcal{L}^{\infty}(\mu)$ and $\xi \in \mathcal{L}^{2}(\mu)$. Show that M is a well-defined faithful *-representation of $\mathcal{L}^{\infty}(\mu)$.

b) Set $\mathcal{M} = \mathcal{M}(\mathcal{L}^{\infty}(\mu))$. Show that $\mathcal{M}' = \mathcal{M}$. This implies that \mathcal{M} is a von Neumann algebra on $L^{2}(\mu)$. Show also that if \mathcal{N} is any abelian von Neumann subalgebra of $\mathcal{B}(\mathcal{L}^{2}(\mu))$ such that $\mathcal{M} \subseteq \mathcal{N}$, then $\mathcal{N} = \mathcal{M}$.

(One therefore says that \mathcal{M} is a maximal abelian von Neuman subalgebra of $\mathcal{B}(\mathcal{L}^2(\mu))$).

Exercise 28.

Let H be a Hilbert space and let $f : \mathbb{R} \to [-1, 1]$ denote the function given by

$$f(x) = \frac{2x}{1+x^2} \,.$$

Show that the map $S \to f(S)$ from $\mathcal{B}(H)_{sa}$ into itself is SOT-SOT continuous. That is, show that if SOT-lim_{α} $S_{\alpha} = S$ for a net $\{S_{\alpha}\}$ in $\mathcal{B}(H)_{sa}$ and some S in $\mathcal{B}(H)_{sa}$, then SOT-lim_{α} $f(S_{\alpha}) = f(S)$.