MAT4360 - Fall 2017 - Exercises for Monday 09.10

Exercise 18.

Let \mathcal{A} be C^* -algebra.

a) For $\varphi \in \mathcal{A}^*$, define $\varphi^* : \mathcal{A} \to \mathbb{C}$ by $\varphi^*(A) = \overline{\varphi(A^*)}$. Check that $\varphi^* \in \mathcal{A}^*$, $(\varphi^*)^* = \varphi$ and $\|\varphi^*\| = \|\varphi\|$.

b) Let $\varphi, \psi \in \mathcal{A}^*$ and $\lambda \in \mathbb{C}$. Check that $(\varphi + \psi)^* = \varphi^* + \psi^*$ and $(\lambda \varphi)^* = \overline{\lambda} \varphi^*$.

Exercise 19. (NB: This exercise will be part of the compulsory assignment this spring). Let $\{A_j\}_{j\in J}$ denote a family of C^* -algebras. Set

$$\mathcal{A} = \Big\{ \{A_j\} \in \prod_{j \in J} \mathcal{A}_j : \sup_{j \in J} \|A_j\| < \infty \Big\}.$$

Define operations on \mathcal{A} by

$$\{A_j\} + \{B_j\} = \{A_j + B_j\}, \lambda\{A_j\} = \{\lambda A_j\}, \{A_j\} \cdot \{B_j\} = \{A_j B_j\}, \text{ and } \{A_j\}^* = \{(A_j)^*\}$$

for $\{A_j\}, \{B_j\} \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. You can take as granted that these operations are well-defined and make \mathcal{A} into a *-algebra.

a) For
$$\{A_j\} \in \mathcal{A}$$
, set

$$\|\{A_j\}\| = \sup_{j \in J} \|A_j\|.$$

It is straightforward to check that this gives a submultiplicative norm on \mathcal{A} (and you are not asked to do this). Show that \mathcal{A} becomes a C^* -algebra.

Note: It is common to denote \mathcal{A} by $\bigoplus_{j \in J} \mathcal{A}_j$ and call it the *direct sum* of the family $\{\mathcal{A}_j\}_{j \in J}$. If $J = \{1, 2, ..., n\}$, then one denotes \mathcal{A} by $\mathcal{A}_1 \oplus \cdots \oplus \mathcal{A}_n$. If $\mathcal{A}_j = \mathcal{B}$ for all $j \in J$, one usually writes $\mathcal{A} = \ell^{\infty}(J, \mathcal{B})$.

b) Set $\mathcal{A}_0 = \left\{ \{A_j\} \in \mathcal{A} : \forall \varepsilon > 0, \exists F \subseteq J, F \text{ finite, such that } \|A_j\| < \varepsilon \forall j \in J \setminus F \right\}$. Show that \mathcal{A}_0 is a closed (two-sided) ideal of \mathcal{A} .

Note: It is common to denote \mathcal{A}_0 by $\bigoplus_{j \in J}^{c_0} \mathcal{A}_j$ and call it the *restricted direct sum* of the family $\{\mathcal{A}_j\}_{j \in J}$. If $\mathcal{A}_j = \mathcal{B}$ for all $j \in J$, one usually writes $\mathcal{A}_0 = c_0(J, \mathcal{B})$.

Exercise 20.

Let $\{H_j\}_{j\in J}$ denote a family of Hilbert spaces. Set

$$H = \left\{ \xi = \{\xi_j\} \in \prod_{j \in J} H_j : \sum_{j \in J} \|\xi_j\|^2 < \infty \right\}.$$

a) Let $\xi = \{\xi_j\}, \eta = \{\eta_j\} \in H$. Show that the series $\sum_{j \in J} \langle \xi_j, \eta_j \rangle$ is convergent. Denote the sum of this series by $\langle \xi, \eta \rangle$.

b) Check that H becomes a Hilbert space w.r.t. $\langle \cdot, \cdot \rangle$. It is called the (Hilbert) direct sum of the family $\{H_j\}_{j \in J}$ and is usually denoted by $\bigoplus_{j \in J} H_j$.

c) For each $j \in J$, let $T_j \in \mathcal{B}(H_j)$, and assume that $\sup_{j \in J} ||T_j|| < \infty$. For $\xi = \{\xi_j\} \in H$, set

$$T(\xi) = \left\{ T_j(\xi_j) \right\} \in \prod_{j \in J} H_j.$$

Verify that $T(\xi) \in H$. Then show that the map $T: H \to H$ sending each ξ to $T(\xi)$ is a bounded operator s.t. $||T|| = \sup_{j \in J} ||T_j||$. We will denote T by $\widetilde{\oplus}_{j \in J} T_j$.

d) For each $j \in J$, let \mathcal{A}_j be a C^* -subalgebra of $\mathcal{B}(H_j)$, and set $\mathcal{A} = \bigoplus_{j \in J} \mathcal{A}_j$ (cf. Exercise 19). Define a map $\Pi : \mathcal{A} \to \mathcal{B}(H)$ by

$$\Pi(\{T_j\}) = \widetilde{\oplus}_{j \in J} T_j$$

for each $\{T_j\} \in \mathcal{A}$. Show that Π is an isometric *-homomorphism.