MAT4360 - Fall 2017 - Exercises for Monday 18.09

In the following exercises \mathcal{A} denotes a C^* -algebra. Whenever appropriate you may use that

$$\mathcal{A}^+ = \{ B^*B : B \in \mathcal{A} \}.$$

(We will start on Monday by showing this result.)

Exercise 7. Assume \mathcal{A} is unital, with unit I.

a) Let $A \in \mathcal{A}_{sa}$ and let f, g be real-valued continuous functions on sp(A). It follows from the continuous functional calculus that $f(A), g(A) \in \mathcal{A}_{sa}$. Show that

$$f(A) \leq g(A) \quad \Longleftrightarrow \quad f \leq g.$$

Deduce that

$$-\|A\| I \le A \le \|A\| I.$$

b) Let $X \in \mathcal{A}$. Show that $X^*X \leq I \iff ||X|| \leq 1$.

Exercise 8. Let $A, B \in \mathcal{A}^+$. Show that

$$A \le B \Rightarrow ||A|| \le ||B||.$$

Exercise 9. Let $A, B \in \mathcal{A}$. Show that

$$\operatorname{sp}(AB) \cup \{0\} = \operatorname{sp}(BA) \cup \{0\}.$$

Exercise 10. Let $A, B \in \mathcal{A}^+$. Show that $AB \in \mathcal{A}^+ \iff AB = BA$.

Exercise 11. Let $A, B \in \mathcal{A}_{sa}$ and $C \in \mathcal{A}$. Show that

$$A \le B \Rightarrow C^*AC \le C^*BC.$$