MAT4360 - Fall 2017 - Exercises for Monday 23.10

We recall that if S is a subset of a normed space, then we let [S] denote the norm-closure of the span of S. When \mathcal{A} is a C^* -algebra, $\pi \in \operatorname{Rep}(\mathcal{A}, H)$, and K is closed subspace of H which is π -invariant, we denote by $\pi_{|K}$ the representation of \mathcal{A} on K obtained by restriction, i.e., $\pi_{|K}$ is given by $\pi_{|K}(A) \eta = \pi(A) \eta$ for all $A \in \mathcal{A}$ and all $\eta \in K$.

Exercise 21. (NB: This exercise will be part of the compulsory assignment this spring).

Let \mathcal{A} be C^* -algebra and let $\pi \in \operatorname{Rep}(\mathcal{A}, H)$ for some Hilbert space H. Set $H_{\pi} = [\pi(\mathcal{A})H]$. Since H_{π} is π -invariant, we can form $\pi^{\operatorname{ess}} \in \operatorname{Rep}(\mathcal{A}, H_{\pi})$ by restriction, i.e., $\pi^{\operatorname{ess}} := \pi_{|H_{\pi}}$. Let $\{e_{\alpha}\}$ be an approximate unit for \mathcal{A} .

Show that $\pi^{\text{ess}}(e_{\alpha}) \to I_{H_{\pi}}$ in the strong operator topology of $\mathcal{B}(H_{\pi})$. Then deduce that π is nondegenerate if and only if $\pi(e_{\alpha}) \to I_H$ in the strong operator topology of $\mathcal{B}(H)$.

Exercise 22. (NB: This exercise will also be part of the compulsory assignment this spring).

Let \mathcal{A} be a C^* -algebra.

a) Assume $\{H_j\}_{j\in J}$ is a family of Hilbert spaces and $\pi_j \in \operatorname{Rep}(\mathcal{A}, H_j)$ for all $j \in J$. Let $H' = \bigoplus_{j\in J} H_j$ denote the Hilbert direct sum of the H_j 's and let $\pi' = \bigoplus_{j\in J} \pi_j \in \operatorname{Rep}(\mathcal{A}, H')$ denote the direct sum of the π_j 's. For each $k \in J$, set

$$H'_{k} = \{ \{\xi_{j}\} \in H' \mid \xi_{j} = 0 \text{ for all } j \in J \setminus \{k\} \}.$$

Check the following:

- (i) Each H'_k is a closed subspace of H', and $H'_k \perp H'_l$ for all $k, l \in J$ such that $k \neq l$.
- (ii) $H' = \left[\bigcup_{k \in J} H'_k\right].$
- (iii) For each $k \in J$, H'_k is π' -invariant, and the restriction $\pi'_k := \pi'_{|H'_k} \in \operatorname{Rep}(\mathcal{A}, H'_k)$ is unitarily equivalent to π_k .

b) Let $\pi \in \operatorname{Rep}(\mathcal{A}, H)$ for some Hilbert space H, and let $\{H_j\}_{j \in J}$ denote a family of π -invariant closed subspaces of H satisfying

$$H_k \perp H_l$$
 for all $k, l \in J$ such that $k \neq l$, and $H = \left[\bigcup_{k \in J} H_k\right]$.

For each $j \in J$, set $\pi_j := \pi_{|H_j|} \in \operatorname{Rep}(\mathcal{A}, H_j)$.

Show that π is unitary equivalent to $\bigoplus_{j \in J} \pi_j$. That is, show that there exists a unitary operator $U: H \to \bigoplus_{j \in J} H_j$ such that

$$U \pi(A) U^* = (\bigoplus_{j \in J} \pi_j)(A) \text{ for all } A \in \mathcal{A}.$$

Exercise 23.

Let \mathcal{A} be C^* -algebra and let φ be a positive linear functional on \mathcal{A} .

a) Let \mathcal{N} denote the subspace of \mathcal{A} given by $\mathcal{N} = \{B \in \mathcal{A} : \varphi(B^*B) = 0\}$ and set $H_0 = \mathcal{A}/\mathcal{N}$. Write $\dot{A} = A + \mathcal{N} \in H_0$ when $A \in \mathcal{A}$. We recall that $\|\dot{A}\|_0 := \varphi(A^*A)$ gives a norm on H_0 . In the proof of the GNS-construction, we did not prove that if $\{e_\alpha\}$ is an approximate unit for \mathcal{A} , then $\{\dot{e_\alpha}\}$ is a Cauchy net in H_0 . Do this !

(As we used in the proof, it then follows that $\{\dot{e_{\alpha}}\}\$ converges to some $\xi_{\varphi} \in H_{\varphi} :=$ the completion of H_{0} .)

b) Assume that $\pi' \in \operatorname{Rep}(\mathcal{A}, H')$ is cyclic, with a cyclic vector $\xi' \in H'$ satisfying that

$$\varphi(A) = \langle \pi'(A) \xi', \xi' \rangle \text{ for all } A \in \mathcal{A}.$$

Show that there exists a unitary operator $U: H_{\varphi} \to H'$ such that

$$U \xi_{\varphi} = \xi'$$
 and $U \pi_{\varphi}(A) U^* = \pi'(A)$ for all $A \in \mathcal{A}$.

(In particular, this shows that π' is unitarily equivalent to π_{φ}).