MAT4360 - Fall 2017 - Exercises for Monday 25.09

Exercise 12.

a) For each $n \in \mathbb{N}$, pick any function $e_n \in C_0(\mathbb{R})$ taking its values in [0, 1], and such that e_n is constantly equal to 1 on [-n, n] while it is constantly equal to 0 outside [-(n+1), n+1]. Show that $\{e_n\}_{n \in \mathbb{N}}$ is an approximate unit for $C_0(\mathbb{R})$.

b) Let H be a Hilbert space and let $\{u_j\}_{j\in J}$ be an orthonormal basis for H. Set $\mathcal{F} = \{F \subseteq J : F \text{ is nonempty and finite}\}$ and consider \mathcal{F} as a directed set w.r.t. set-inclusion. For each $F \in \mathcal{F}$, let p_F denote the orthogonal projection from H onto the finite dimensional subspace $H_F = \text{span}\{u_j : j \in F\}$. Show that $\{p_F\}_{F \in \mathcal{F}}$ is an approximate unit for $\mathcal{K}(H)$.

Exercise 13.

When \mathcal{A} and \mathcal{B} are *-algebras, one may define their direct sum $\mathcal{A} \oplus \mathcal{B}$ by equipping $\mathcal{A} \times B$ with the obvious pointwise operations, and thereby obtain a *-algebra which contains (copies of) \mathcal{A} and \mathcal{B} as (two-sided) ideals. Moreover, if \mathcal{A} and \mathcal{B} are C^* -algebras, then $\mathcal{A} \oplus \mathcal{B}$ becomes a C^* -algebra with respect to the norm $||(\mathcal{A}, \mathcal{B})|| := \max(||\mathcal{A}||, ||\mathcal{B}||)$.

a) Let C be a *-algebra and A, B be *-subalgebras of C. Define A + B and AB as subsets of C in the obvious way. Assume that

$$\mathcal{C} = \mathcal{A} + \mathcal{B}, \quad \mathcal{A} \cap \mathcal{B} = \{0\} \text{ and } \mathcal{A} \mathcal{B} = \{0\}.$$

(One often says that \mathcal{C} is the internal direct sum of \mathcal{A} and \mathcal{B} when these conditions are satisfied.) Show that \mathcal{A} and \mathcal{B} are (two-sided) ideals in \mathcal{C} and that \mathcal{C} is *-isomorphic to $\mathcal{A} \oplus \mathcal{B}$.

b) Let \mathcal{C} be a C^* -algebra and \mathcal{A} , \mathcal{B} be C^* -subalgebras of \mathcal{C} . Assume that

$$\mathcal{C} = \mathcal{A} + \mathcal{B}$$
 and $\mathcal{A}\mathcal{B} = \{0\}$.

Show that \mathcal{A} and \mathcal{B} are (closed) ideals in \mathcal{C} and that \mathcal{C} is *-isomorphic to $\mathcal{A} \oplus \mathcal{B}$.

c) Let \mathcal{A} be a unital C^* -algebra with unit e. Define $\widetilde{\mathcal{A}}$ as a *-algebra in the same way as we did when \mathcal{A} was nonunital.

Show that \mathcal{A} is the internal direct sum of \mathcal{A}' and \mathcal{B} , where

$$\mathcal{A}' := \mathcal{A} \times \{0\}$$
 and $\mathcal{B} := \mathbb{C}(I - e) = \{\lambda (-e, 1) : \lambda \in \mathbb{C}\}.$

Deduce that $\widetilde{\mathcal{A}}$ is *-isomorphic to $\mathcal{A} \oplus \mathbb{C}$. (Hence we may transport the C^* -norm on $\mathcal{A} \oplus \mathbb{C}$ to a C^* -norm on $\widetilde{\mathcal{A}}$, so that $\widetilde{\mathcal{A}}$ becomes a C^* -algebra also when \mathcal{A} is unital. However one should be aware that many authors prefer just to set $\widetilde{\mathcal{A}} = \mathcal{A}$ in this case.)