MAT4360 - Fall 2017 - Exercises for Monday 30.10

Exercise 24.

Let H be a Hilbert space and let φ be a linear functional on $\mathcal{B}(H)$.

a) Show that the following conditions are equivalent:

(i) There exist $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n \in H$ such that

$$\varphi(T) = \sum_{j=1}^{n} \langle T\xi_j, \eta_j \rangle \text{ for all } T \in \mathcal{B}(H),$$

- (ii) φ is WOT-continuous,
- (iii) φ is SOT-continuous.
- (Of course, any of these conditions implies that φ is norm-continuous).
- b) Deduce that if \mathcal{C} is a convex subset of $\mathcal{B}(H)$, then $\overline{\mathcal{C}}^{\text{SOT}} = \overline{\mathcal{C}}^{\text{WOT}}$.

Exercise 25. (NB: This exercise will be a part of the compulsory assignment this fall).

Let Ω be a compact Hausdorff space and let μ be a finite regular Borel measure on Ω . It will be helpful to be somewhat pedantic and consider elements of the Hilbert space $\mathcal{L}^2(\mu)$ as equivalence classes of the form $[\xi]$ where ξ is any Borel measurable complex function on Ω such that $\int_{\Omega} |\xi|^2 d\mu < \infty$ (so $[\xi]$ is the set of all Borel measurable complex functions on Ω agreeing with $\xi \mu$ -almost everywhere). The inner product on $\mathcal{L}^2(\mu)$ is then given by

$$\langle [\xi], [\eta] \rangle = \int_{\Omega} \xi \,\overline{\eta} \,\mathrm{d}\mu \quad \text{ for all } [\xi], [\eta] \in \mathcal{L}^2(\mu) \,.$$

Set $\mathcal{A} = C(\Omega)$ and let φ denote the positive linear functional on \mathcal{A} given by

$$\varphi(f) = \int_{\Omega} f \,\mathrm{d}\mu \quad \text{for all } f \in \mathcal{A}.$$

Moreover, set $\mathcal{N} = \{f \in \mathcal{A} \mid \varphi(f^*f) = 0\}$ and $S = \operatorname{supp}(\mu)$ (as defined in Exercise 14), i.e.,

 $S = \{ \omega \in \Omega \mid \mu(U) > 0 \text{ for every open neighbourhood } U \text{ of } \omega \}.$

Let $(H_{\varphi}, \pi_{\varphi}, \xi_{\varphi})$ denote the GNS-triple associated with φ .

a) Use that $\{[f] \mid f \in \mathcal{A}\}$ is dense in $\mathcal{L}^2(\mu)$ (as known from MAT4410) to show that there exists a unitary operator $U: H_{\varphi} \to \mathcal{L}^2(\mu)$ such that

$$U\xi_{\varphi} = [1_{\Omega}]$$
 and $[U\pi_{\varphi}(f)U^*]([\xi]) = [f\xi]$

for all $f \in \mathcal{A}, \xi \in \mathcal{L}^2(\mu)$.

Comment: This shows that π_{φ} , up to unitary equivalence, is the representation of \mathcal{A} on $\mathcal{L}^{2}(\mu)$ by multiplication operators.

b) Verify that $\ker(\pi_{\varphi}) = \mathcal{N} = \{f \in \mathcal{A} \mid f = 0 \text{ on } S\}$. Then show that the C*-algebra $\pi_{\varphi}(\mathcal{A})$ is *-isomorphic to C(S).

NB: One more exercise on the next page !

Exercise 26. (NB: This exercise will be the last one in the compulsory assignment this fall).

a) Let φ be a positive linear functional on a unital C^* -algebra \mathcal{A} and let $B \in \mathcal{A}$ be *invertible*. Define $\psi : \mathcal{A} \to \mathbb{C}$ by $\psi(A) = \varphi(B^*AB)$ for all $A \in \mathcal{A}$.

Check that ψ is also a positive linear functional on \mathcal{A} . Then show that π_{ψ} is unitarily equivalent to π_{φ} .

b) Set $\mathcal{A} = M_n(\mathbb{C})$ for some $n \in \mathbb{N}$ and let ψ be any *faithful* positive linear functional on \mathcal{A} . Show that π_{ψ} is unitarily equivalent to π_{Tr} .

Here, Tr denotes the canonical trace-functional on \mathcal{A} , cf. Exercise 17.

Comment: As we have seen in a lecture, H_{Tr} is equal to \mathcal{A} , considered as a Hilbert space w.r.t. $\langle A, B \rangle = \text{Tr}(B^*A)$, and π_{Tr} is nothing but the representation of \mathcal{A} on itself by left multiplication.