UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3400/4400 — Linear Analysis with Applications
Day of examination:	Wednesday, 2 June 2021
Examination hours:	15.00-19.00
This problem set consists of 2 pages.	
Appendices:	None.
Permitted aids:	All.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All subproblems count equally. If there is a subproblem you cannot solve, you may still use the result in the sequel. All answers have to be substantiated.

Problem 1 (weight 20%)

Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ and define the function H on $\overline{\mathbb{R}}$ by

$$H(x) = \begin{cases} 0, & \text{if } x < 0, \\ 1, & \text{if } x \ge 0. \end{cases}$$

Let \mathcal{I} denote the collection of all open intervals (a, b) for $a, b \in \mathbb{R}$ (with the usual convention $(a, a) = \emptyset$) and define the function $\varrho \colon \mathcal{I} \to \mathbb{R}$ by

$$\varrho((a,b)) = H(b) - H(a).$$

Let μ^* be the outer measure generated by \mathcal{I} and ρ .

(a) Prove that

$$\mu^*(A) = \begin{cases} 1, & \text{if } 0 \in A, \\ 0, & \text{if } 0 \notin A, \end{cases}$$

for every $A \subseteq \mathbb{R}$.

(b) Prove that every set $E \subseteq \mathbb{R}$ is μ^* -measurable.

Problem 2 (weight 40%)

Let (X, \mathcal{A}, μ) be a measure space and suppose that there is a set $A \in \mathcal{A}$ such that $0 < \mu(A) < \infty$. Let $H = L^2(X, \mathcal{A}, \mu)$ be the real Hilbert space of real-valued functions f on X. Consider the set

 $N = \{ f \in H : f(x) \ge 0 \text{ for almost every } x \in X \}.$

(Continued on page 2.)

- (a) Prove that N is not a subspace of H.
- (b) Prove that the smallest subspace (of H) which contains N is H.
- (c) Prove that N is closed in H.
- (d) Suppose that g is a fixed element in H and define

$$d_H(g,N) = \inf_{f \in N} \|f - g\|$$

Is there a unique element $f \in N$ such that d(g, N) = ||f - g||?

Problem 3 (weight 10%)

Let H be a Hilbert space and let T be a bounded linear operator on H. Prove that

$$\ker(T^*T) = \ker(T).$$

Hint. Prove that $\ker(T) \subseteq \ker(T^*T)$ and that $\ker(T^*T) \subseteq \ker(T)$.

Problem 4 (weight 30%)

Let H be an infinite dimensional Hilbert space.

(a) Let n be a positive integer. Suppose that $\operatorname{rank}(S) = n - 1$ and that $E_n = \{e_1, e_2, \dots, e_n\}$ is an orthonormal set in H. Prove that

 $\ker(S) \cap \operatorname{span}(E_n) \neq \{0\}.$

Hint. Consider the restriction of S to $X = \text{span}(E_n)$.

Let T be a compact self-adjoint operator on H and assume that 0 is not an eigenvalue of T. Let $\{\lambda_k\}_{k\geq 1}$ denote the sequence of eigenvalues of T repeated according to their multiplicity and enumerated decreasingly (so that $|\lambda_k| \geq |\lambda_{k+1}|$ for every $k \geq 1$). Define

$$a_n(T) = \inf_{\substack{S \in \mathcal{B}(H) \\ \operatorname{rank}(S) = n-1}} \|T - S\|$$

for positive integers n.

- (b) Prove that $a_n(T) \leq |\lambda_n|$ for every $n \geq 1$.
- (c) Prove that $a_n(T) \ge |\lambda_n|$ for every $n \ge 1$. *Hint.* Use (a).
 - END