MAT3400/4400-Spring 19 - Exercises for Monday, Mars 11

- From Lindstrøm's book, section 8.4: 2, 5

Extra exercise 14

Let $E \subseteq \mathbb{R}$ be Borel measurable, and let $a, r \in \mathbb{R}, r \neq 0$. Show that $E+a$ and $r E$ are also Borel measurable.

Hint: Consider the collections of subsets of \mathbb{R} given by $\mathcal{B}+a:=\{E+a \mid E$ Borel subset of $\mathbb{R}\}$ and $r \mathcal{B}:=\{r E \mid E$ Borel subset of $\mathbb{R}\}$.

Extra exercise 15

Let S denote either $\overline{\mathbb{R}}$ or \mathbb{C}, and let $f: \mathbb{R} \rightarrow S$. Let $a \in \mathbb{R}$ and define $f_{a}: \mathbb{R} \rightarrow S$ by

$$
f_{a}(x):=f(x+a) \quad \text { for all } x \in \mathbb{R}
$$

Moreover, let E be a Lebesgue measurable subset of \mathbb{R}, and set

$$
E-a:=E+(-a)=\{e-a \mid e \in E\} .
$$

Note that $E-a$ is Lebesgue measurable, as follows from [L; Exercise 8.4.2]. Let μ denote the Lebesgue measure on the Lebesgue measurable subsets of \mathbb{R}.
a) Show that f is Lebesgue measurable if and only if f_{a} is Lebesgue measurable.
b) Assume that $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}_{+}$is Lebesgue measurable, so $f_{a}: \mathbb{R} \rightarrow \overline{\mathbb{R}}_{+}$is also Lebesgue measurable (by a)). Show that $\int_{E-a} f_{a} d \mu=\int_{E} f d \mu$.
c) Let again $f: \mathbb{R} \rightarrow S$. Show that f is integrable over E if and only if f_{a} is integrable over $E-a$, in which case we have

$$
\int_{E-a} f_{a} d \mu=\int_{E} f d \mu
$$

in other words, we have $\int_{B} f(x+a) d \mu(x)=\int_{B+a} f(t) d \mu(t)$ with $B:=E-a$.

- From Lindstrøm's book, section 8.5: 2

Extra exercise 16

Assume that $A \subseteq \mathbb{R}$ is Lebesgue measurable and let μ denote the Lebesgue measure on the Lebesgue measurable subsets of \mathbb{R}. Show that

$$
\begin{aligned}
\mu(A) & =\inf \{\mu(G) \mid G \text { is open in } \mathbb{R} \text { and } A \subseteq G\} \\
& =\sup \{\mu(K) \mid K \text { is compact in } \mathbb{R} \text { and } K \subseteq A\} .
\end{aligned}
$$

Extra exercise 17

In this exercise (and only there) we let \mathcal{B} denote the σ-algebra of all Borel subsets of \mathbb{R}, while \mathcal{L} denotes the σ-algebra of all Lebesgue measurable subsets of \mathbb{R}. Moreover, we let μ denote the Lebesgue measure on \mathcal{B}, while m denotes the Lebesgue measure on \mathcal{L}.
Let \mathcal{N}_{μ} denote the collection of all null sets for μ, that is, $N \in \mathcal{N}_{\mu}$ if and only if $N \subseteq \mathbb{R}$ and there exists some $C \in \mathcal{B}$ such that $N \subseteq C$ and $\mu(C)=0$.
a) Show that $A \subseteq \mathbb{R}$ is Lebesgue measurable if and only if there exists a Borel set B and $N \in \mathcal{N}_{\mu}$ such that $A=B \cup N$.
b) Show that $(\mathbb{R}, \mathcal{L}, m)$ is the completion of $(\mathbb{R}, \mathcal{B}, \mu)$.

