• From Lindstrøm's book, section 8.4: 2, 5

Extra exercise 14

Let $E \subseteq \mathbb{R}$ be Borel measurable, and let $a, r \in \mathbb{R}, r \neq 0$. Show that E + a and rE are also Borel measurable.

Hint: Consider the collections of subsets of \mathbb{R} given by $\mathcal{B} + a := \{E + a \mid E \text{ Borel subset of } \mathbb{R}\}$ and $r\mathcal{B} := \{rE \mid E \text{ Borel subset of } \mathbb{R}\}$.

Extra exercise 15

Let S denote either $\overline{\mathbb{R}}$ or \mathbb{C} , and let $f : \mathbb{R} \to S$. Let $a \in \mathbb{R}$ and define $f_a : \mathbb{R} \to S$ by

 $f_a(x) := f(x+a)$ for all $x \in \mathbb{R}$.

Moreover, let E be a Lebesgue measurable subset of \mathbb{R} , and set

 $E - a := E + (-a) = \{e - a \mid e \in E\}.$

Note that E - a is Lebesgue measurable, as follows from [L; Exercise 8.4.2].

Let μ denote the Lebesgue measure on the Lebesgue measurable subsets of \mathbb{R} .

a) Show that f is Lebesgue measurable if and only if f_a is Lebesgue measurable.

b) Assume that $f : \mathbb{R} \to \overline{\mathbb{R}}_+$ is Lebesgue measurable, so $f_a : \mathbb{R} \to \overline{\mathbb{R}}_+$ is also Lebesgue measurable (by a)). Show that $\int_{E-a} f_a \ d\mu = \int_E f \ d\mu$.

c) Let again $f : \mathbb{R} \to S$. Show that f is integrable over E if and only if f_a is integrable over E - a, in which case we have

$$\int_{E-a} f_a \ d\mu = \int_E f \ d\mu$$

in other words, we have $\int_B f(x+a) d\mu(x) = \int_{B+a} f(t) d\mu(t)$ with B := E - a.

• From Lindstrøm's book, section 8.5: 2

Extra exercise 16

Assume that $A \subseteq \mathbb{R}$ is Lebesgue measurable and let μ denote the Lebesgue measure on the Lebesgue measurable subsets of \mathbb{R} . Show that

$$\mu(A) = \inf \left\{ \mu(G) \mid G \text{ is open in } \mathbb{R} \text{ and } A \subseteq G \right\}$$
$$= \sup \left\{ \mu(K) \mid K \text{ is compact in } \mathbb{R} \text{ and } K \subseteq A \right\}.$$

Extra exercise 17

In this exercise (and only there) we let \mathcal{B} denote the σ -algebra of all Borel subsets of \mathbb{R} , while \mathcal{L} denotes the σ -algebra of all Lebesgue measurable subsets of \mathbb{R} . Moreover, we let μ denote the Lebesgue measure on \mathcal{B} , while m denotes the Lebesgue measure on \mathcal{L} . Let \mathcal{N}_{μ} denote the collection of all null sets for μ , that is, $N \in \mathcal{N}_{\mu}$ if and only if $N \subseteq \mathbb{R}$ and there exists some $C \in \mathcal{B}$ such that $N \subseteq C$ and $\mu(C) = 0$.

a) Show that $A \subseteq \mathbb{R}$ is Lebesgue measurable if and only if there exists a Borel set B and $N \in \mathcal{N}_{\mu}$ such that $A = B \cup N$.

b) Show that $(\mathbb{R}, \mathcal{L}, m)$ is the completion of $(\mathbb{R}, \mathcal{B}, \mu)$.