MAT3400/4400 - Spring 19 - Exercises for Monday, Mars 18

• From the exercises in the Notes on ELA: 2.2, 2.3, 2.5, 2.8, 2.13 b).

In addition, Exercise 2.1 is a routine exercise that everybody should do. But it will not be discussed in class unless there is time for it.

Extra Exercise 18

Let X be a nonempty set, set $\mathcal{A} = \mathcal{P}(X)$ (the σ -algebra consisting of all subsets of X), and let μ denote the counting measure on \mathcal{A} . Note that in this case, the space \mathcal{M} of all complex-valued measurable functions on X consists of all complex-valued functions on X.

a) Let $\rho: X \to \mathbb{R}_+$ and $A \in \mathcal{P}(X)$. Show that

$$\int_A \rho \, d\mu = \sum_{x \in A} \, \rho(x)$$

where the sum is defined as in Extra Exercise 1, cf. the exercise set for Jan. 21. Note that this shows that the measure $\mu_{\rho} : \mathcal{P}(X) \to [0, \infty]$, given by

$$\mu_{\rho}(A) = \sum_{x \in A} \rho(x), \quad A \in \mathcal{P}(X),$$

which was introduced in this exercise, satisfies that $\mu_{\rho}(A) = \int_{A} \rho \, d\mu$ for all $A \in \mathcal{P}(X)$.

b) Let $p \in [1, \infty)$ and let $f \in \mathcal{M}$. Deduce from a) that $||f||_p = \left(\sum_{x \in X} |f(x)|^p\right)^{1/p}$. Conclude that

$$\mathcal{L}^{p}(X, \mathcal{A}, \mu) = \Big\{ f \in \mathcal{M} : \sum_{x \in X} |f(x)|^{p} < \infty \Big\}.$$

Verify also that if $f, g \in \mathcal{L}^p(X, \mathcal{A}, \mu)$, then f = g μ -a.e. if and only if f = g. Note that this implies that $L^p(X, \mathcal{A}, \mu) = \mathcal{L}^p(X, \mathcal{A}, \mu)$. As is common, we set $\ell^p(X) := \mathcal{L}^p(X, \mathcal{A}, \mu)$.

c) Let $1 \le p \le r < \infty$ and let $\ell^{\infty}(X)$ denote the space of all bounded complex-valued functions on X. Show that

$$\ell^p(X) \subseteq \ell^r(X) \subseteq \ell^\infty(X).$$