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CHAPTER 1

Preliminaries

In this chapter we fix some notation and give a review of some of the concepts
and results that we will need. These are usually covered in undergraduate
courses in real analysis, and the reader may consult the book of T. Lindstrgm,
Spaces: an introduction to real analysis (AMS 2017), or any other standard
book in real analysis, for details and proofs.

1.1 Normed spaces

Throughout these notes F will denote either R (the real numbers) or C (the
complex numbers). If X, Y are sets, we let X x Y denote their Cartesian

product, i.e.,
XXY:{(x,y):xEX,yEY}.

A metric space (X, d) is called complete when every Cauchy sequence in
(X,d) is convergent.

Definition 1.1.1. A normed space (X, || -||) over F is a vector space X over
F which is equipped with a norm || - ||. We recall that X is then a metric
space with respect to the metric given by d(x,y) = ||z — y|| for z,y € X.
We will only consider normed spaces over [ in these notes, and we will often
just write X to denote such a normed space, assuming tacitly that some
norm on X is given.

When z € X and r > 0, we let BX(z) denote the closed ball in X with
center in x and radius r, that is,

BX(x)={ye X :|lz—yll <r}

When there is no danger of confusion, we just write B, (z) instead of BX(z).
We also set

Xy = B{0), ie, Xy ={z e X :|z| <1}.



1. Preliminaries

Definition 1.1.2. If (X || - ||) is a normed space, and || - ||’ is also a norm
on X, we say that || - || and || - || are equivalent when there exist positive
real numbers K and L such that

|z| < K ||z| and ||z|| < L|z||' forall z € X.

When || - || and || - || are equivalent, it is clear that a sequence {x,}>,
in X converges to z € X w.r.t. || - || if and only if it converges to x € X
w.r.t. || - |". The following proposition implies that for many purposes the
choice of a norm in a finite-dimensional space can be made arbitrarily.

Proposition 1.1.3. If X is a finite-dimensional vector space over F, then
all norms on X are equivalent.

Definition 1.1.4. Assume {z,}> ; is a sequence in a normed space (X, ||-||).
We say that the series > 07 |z, is convergent in X if there is some x € X
such that ||z — XN, || = 0as N — oo, in which case we say that >°°, x,,
converges to x (w.r.t. || - ||), and also write z = >0 | x,,.

Definition 1.1.5. When a normed space (X, || - ||) is complete with respect
to the associated metric given by

d(z,y) = |lz =yl
for all z,y € X, we say that X is a Banach space (over ).

To check that a normed space is a Banach space, the following result is
often useful:

Theorem 1.1.6. Let (X, || - ||) be a normed space. Then X is a Banach
space if and only if every absolutely convergent series in X is convergent in
X, that is, if and only if the following condition holds :

~ . o .
Whenever Y0 | x, is a series in X such that Yo%, ||z,|| < oo, then
Yool Xy 18 convergent in X.

Remark 1.1.7. It is good to know that if X is a normed space, then we
can always form its completion; this means that whenever needed, we can
assume that X sits as a dense subspace of a Banach space X where the
norm of X extends the norm on X. An elegant way to construct X (as
an application of the so-called Hahn-Banach theorem) is covered in more
advanced courses on linear analysis.
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1.2 Inner product spaces

Definition 1.2.1. An inner product space over [F is a vector space X over
F which is equipped with an inner product (-,-) : X x X — F. This means
that for x,y,z € X and A € F we have:

i) (x+y,2) =(z,2) + (y,2),
ii) (Az,y) = XNz, ),

iii) (y,z) = (z,y),

iv) (z,z) >0,

v) (xz,x) = 0 if and only if z = 0.

Remark 1.2.2. a) Properties i) and ii) say that the inner product is linear
in the first variable.

b) When F = R, property iii) says that the inner product is symmetric,
i.e., (y,x) = (z,y); combining i) and ii) with iii), we then get that the inner
product is also linear in the second variable.

¢) When F = C, we get that the inner product is conjugate-linear in the
second variable; this means that we have

(T,y +2) = (z,y) + (z,2) and (z,\y) = Nz, y).

Some authors prefer to use inner products that are linear in the second
variable and conjugate-linear in the first variable. This is common in
textbooks related to physics or mathematical physics. As one can go from
one type to the other by setting (z,y)" := (y,x), it is mainly a matter of
taste which convention one chooses to use.

In the sequel, by an inner product space, we will always mean an inner
product space over F. An inequality of fundamental importance is:

Theorem 1.2.3 (The Cauchy-Schwarz inequality). Let X be an inner prod-
uct space. For x € X set ||z|| := (x,x)"/2. Then we have

(@, )] <l [yl (1.2.1)
for all x,y € X, with equality if and only if x and y are linearly dependent.

If X is an inner product space, then using the Cauchy-Schwarz inequality,
one deduces that ||z|| = (x,z)'/? gives a norm on X. Thus, X is then a
normed space, and its norm is easily seen to satisfy the parallellogram law,
that is, for all z,y € X we have

Iz +ylI* + llo = ylI* = 2|21 + 2]y ]|*. (1.2.2)

3
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Definition 1.2.4. Let X be an inner product space. If z,y € X, then x
and y are said to be orthogonal (to each other) when (z,y) = 0. A subset
S C X is called orthogonal if x and y are orthogonal for all x,y € S such
that  # y. Moreover, S is called orthonormal if S is orthogonal and ||z|| = 1
for all z € S.

Proposition 1.2.5 (Pythagoras). Assume {x1,...,z,} is a finite orthogo-
nal subset of an inner product space X. Then we have

loy + - 2all® =l * 4+ [l

Proposition 1.2.6. Assume S = {uy,...,u,} is a finite orthonormal subset
of an inner product space X. Then S s linearly independent. Moreover, if
u € Span{uy, ..., u,}, i.e., if u is a linear combination of the vectors in S,
then

n n
=2 (ww)u; and Jul® =3 [(u,u;)|”
j=1

J=1

Proposition 1.2.7 (Bessel’s inequality). Assume S = {u; : j € J} is a
countable orthonormal subset of an inner product space X. Then for any

x € X we have
ol up® <l
jeJ

Definition 1.2.8. An inner product space X (over IF) is called an Hilbert
space (over F) when X is complete with respect to the norm associated with
its inner product.

Remark 1.2.9. Assume X is an inner product space. Conmdermg X as a
normed space, we may form its completion X (cf. Remark , and extend
the inner product on X to an inner product on X as follows 1f Y,y € X,
then we can pick sequences {x,}5°,, {z/ }°2, in X converging respectively
to y and y/'; after checking that {(x,,z))}>°, is a Cauchy sequence in F,
hence is convergent, we may set

(y,9) := lim (@, 27,).

It is then a somewhat tedious exercise to verify that this gives a well-defined
inner product on X which extends the one on X. This means that whenever
needed, we may assume that X sits as a dense subspace of a Hilbert space
X (called the completion of X)) where the inner product on X extends the
inner product on X.

4
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1.3 Linear operators

Definition 1.3.1. Assume that X and Y are both vectors spaces over F.
Then a map T': X — Y is called a linear operator if we have

T()\l T+ )\2 .’Ig) = )\1 T((El) + )\2 T(.%Q)

for all A\, \y € F and all z1, 29 € X.

We denote by £(X,Y) the set of all linear operators from X to Y. One
readily checks that £(X,Y") is a vector space over F with respect to the
operations defined by

(S+T)(x)=S5(x)+T(x), (AT)(z)=AT(z)

for S, T € L(X,Y), A € Fand z € X. We also set L(X) := L(X,X). We
let Ix € L(X) denote the identity map from X into itself, that is, Ix(z) = x
for all x € X. We just [ instead of Iy if no confusion is possible.

Definition 1.3.2. Assume that X and Y are both normed spaces over F.
Then a linear operator T : X — Y is called bounded if there exists some
real number M > 0 such that

IT()| < Mllz| Ve X,
or, equivalently, such that ||T'(x)| < M for all z € X;.

Proposition 1.3.3. Assume that X and Y are both normed spaces over F
and let T' € L(X,Y). Then the following conditions are equivalent:

(a) T is bounded.

(b) T is uniformly continuous on X .
(¢) T is continuous on X .

(d) T is continuous at x = 0.

We denote the set of all bounded linear operators from X to Y by B(X,Y).
We follow tradition here and use the qualifying adjective “bounded” , although

we could equally well have used “continuous” instead. One readily checks
that B(X,Y') is a subspace of L(X,Y). We also set B(X) = B(X, X).
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Proposition 1.3.4. Assume that X and Y are both normed spaces over FF.
ForT € B(X,Y), set

IT)) = sup {|T(2)]| : = € X1} < o0.

Then the map T — ||T|| is a norm on B(X,Y), called the operator norm.
Moreover, we have

||| = sup {|IT(@)] : @ € X, |l = 1} (when X # {0}),

and
IT@)[ < T ||lz]| Ve X.

Theorem 1.3.5. Assume that X is a normed space over IF, while Y is a
Banach space. Then B(X,Y) is Banach space. In particular, B(X) is a
Banach space whenever X is a Banach space.

An immediate consequence of this theorem is that B(X,F) is a Banach
space whenever X is normed space over F. Elements of £(X,F) are called
linear functionals. Thus B(X,F) consists of the bounded linear functionals
on X; it is usually called the dual space of X and denoted by X* in many
books, or by X* in others.

Definition 1.3.6. A map T : X — Y between two vector spaces over F is
called a (vector space) isomorphism if T € L(X,Y) and T is bijective (that
is, T" is both one-to-one and onto). It is then easy to check that the inverse
map of T, T71: Y — X, is linear, i.e., T7' € L(Y, X).

Definition 1.3.7. Assume that X and Y are normed spaces over F. A map
T : X — Y is called an isomorphism of normed spaces if T is a (vector
space) isomorphism such that both 7" and 7! are bounded.

Definition 1.3.8. Assume that X is a normed space and 7' € B(X). Then
we say that 7" is invertible in B(X) if T is an isomorphism of normed spaces.
In other words, an operator 7' € B(X) is invertible in B(X) if 7" is bijective
and T~ € B(X).

Proposition 1.3.9. Let X,Y,Z be normed spaces over F, and let T €
B(X,Y), SeB(Y,Z). Set ST:=SoT:X — Z. Then ST € B(X,Z)
and

ST < ST -

Corollary 1.3.10. Assume that X is a normed space and S € B(X). For
each n € N, let S™ := 5 ---5 denote the product of S with itself n times,
then S™ € B(X) and ||S™|| < ||S||". Note that by setting S° = Ix, this
formula also holds when n = 0.

6
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Theorem 1.3.11. Assume that X is a Banach space and S € B(X) is such
that ||S]| < 1. Then I — S is invertible in B(X) and

(I—-S5)"'=>"8" (convergence w.r.t. operator norm).
n=0

Moreover, ||[(I — S)7Y| < 1—|1|S||'






CHAPTER 2

On LP-spaces

An important class of Banach spaces over F associated with measure spaces
are the so-called LP-spaces, where 1 < p < oco. We will assume that F = C,
and just mention that the case where F = R may be handled in a similar
way. Our presentation is somewhat more detailed than the one given in
section 7.7 and 7.9 of Lindstrgm’s book.

21 Thecasel <p<
Let (X,.A, i) be a measure space and set
M=M(XA) := {f X —=C:fis A—measurable},

which we know is a vector space (with its natural operations). We will
be interested in subspaces of M associated with any p € [1,00]. We first
consider the case 1 < p < co. For each f € M we note that the function | f|?
is non-negative and belongs to M (since the function z — |z|P is continuous
on C), so we can set

1= ([ 177am) " € 0.0

(using the convention that oco'/? = 00). Moreover, we set

LP(X, A, ) = {f € Mt | ]}, < o0}

We will just write £? when there is no danger of confusion, and note that
some authors write £7(p1). It is then clear that £ consists of all the complex
functions on X which are integrable (w.r.t. p). When A = P(X) and
i is the counting measure on A, it is common to write ¢7(X) instead of

Lr(X, A, ).



2. On LP-spaces

It is not difficult to see that LP is a subspace of M. For example,
closedness under addition follows readily from the inequality |z + w|P <
2P(|z|P 4 |w|P), which is easily seen to hold for all z,w € C. On the other
hand, it is not true in general that || - ||, is a norm on £P. The reason is that
for f € LP, we have

£l =0 [ 1fIFdu=0 |f'=0 pac. & f=0 pac.
As we will soon see, || - ||, is a seminorm on £? in the following sense:

Definition 2.1.1. A seminorm on a vector space V' (over F) is a function
v — ||v]|] from V' into [0,00) satisfying [|[Av| = |A|||v]| and the triangle
inequality ||v + w| < ||v|| + ||w] for all v,w € V and A € F.

We note that a seminorm || - || is a norm if it also satisfies that ||v]| =0
only if v = 0. Using the triangle inequality for |- | on C, one readily deduces
that || - ||1 gives a seminorm on £'. To handle the case p > 1 we will need:

Theorem 2.1.2 (Hélder’s inequality). Assume p € (1,00) and let g € (1, 00)

denote p’s conjugate exponent given by q = ﬁ, so that % + é =1.

Let f € LP and g € L9. Then fg € L' and

I£glly = [ 1£gldn < 1171l llgla- (2.1.1)

Proof. We first note that if a, b are nonnegative real numbers, then we have

P pa
ab< &+ (2.1.2)
p q

A geometric way to prove this inequality (called Young’s inequality) is to
observe that % is the area given [ P! dx, while %q is the area given by
Jeystdy. As ¢q—1=1/(p—1), we have y = 27" < z = y9~! when
x,y > 0. By considering the graph of y = P! and the rectangle [0, a] x [0, b]
in the xy-plane, one realizes that must be true.

Next, we note that we may assume that || f||, = |lg|l, = 1. Indeed,
assume that holds whenever || f]l, = ||lgll, = 1, and consider f € L?
and g € L. If || f||, =0 or ||g||; = 0, then both sides of are equal to
zero. On the other hand, if || f||, and | g||, are both nonzero, then we may
use that holds for the functions f/||f||, and ¢/||¢/;, and deduce that
it holds in the general case.

10



2.1. Thecasel <p<

Hence, assume that || ]|, = ||g||; = 1. Then, using 2) with a = | f(x)]
and b = |g(x)| for each x € X, and linearity of the 1ntegra1 we get

|1 7gldi = / (@) lg(@) du(e)
/Wf$W¢L /Wg ) dpu(x
= I+ 2 Nl
1
=-+-=1
p q
= 171 gl

as desired. ]

Corollary 2.1.3. Let p € [1,00). Then | - ||, is a seminorm on LP. In
particular, for all f,g € LP, we have

1f+gllp < [Ifll, +1lgll,  (Minkowski’s inequality) (2.1.3)

Proof. As already mentioned, the case p = 1 is straightforward. So assume
p € (1,00). The reader should have no problem to see that we have
[IA pr Al || fl, for all A € C and all f € £P. Next, let f,g € L7, and let
q be p’s conjugate exponent. As (p — 1)g = p and p/q = p— 1, we have

115+ g0y = ([ 1+ g0 dpn) ™ = ([ 17+ g du)™”
= If+gly " =17+l

Since f + g € LP, this shows that |f + g[P~ € £9; moreover, using Holder’s
inequality (at the 4th step), we get

1F gl = [ 1F+gldu= [ 1f+gl1f + gV dp

< p—1 p—1
< [ AIF+ gl dut [ 1gl1f + P dp

< Al I1F + g7l + Nlglle 1 + 917 g
= (I£llo + lgll) 1S + g g
(L1 + gllp) 1f +glp™"

and Minkowski’s inequality clearly follows. ]

11



2. On LP-spaces

Let {f.} be a sequence in £P and f € L£P. We note that it may happen
that f, — f pointwise on X while || f,, — f]|, # 0 as n — oco. For example
one may let X =R, A = Bg, u = Lebesgue measure on Bg, and consider
the sequence given by f,, = X[nn+1) for each n € N: it converges pointwise
to 0 on R as n — oo, and satisfies || f,||, = 1 for all n € N.

The following LP-version of Lebesgue’s Dominated Convergence Theorem
gives conditions ensuring that a pointwise limit is also convergent w.r.t. || ||,.

Proposition 2.1.4. Let p € [1,00) and {f,}nen C LP. Assume that there
exist some g € LP such that |f,| < g p-a.e. for alln € N, and some f € M
such that f, — f pointwise p-a.e. on X.

Then f € LP and || f, — f]l, = 0 as n — oc.

Proof. The assumptions imply that |f,|P < ¢* p-a.e. for all n € N and that
| ful? — | f|P pointwise p-a.e. on X. It follows that we |f|? < ¢? p-a.e., so

/ ’f!pdué/ gPdp < oo,
X X
hence f € LP. Further, we get
p
o= 1P < (Ifal + 1) <29 =2"9" prace.,

and |f, — f|? — 0 pointwise p-a.e. on X. Since 2P g* € L', we can apply
Lebesgue’s Dominated Convergence Theorem and get

tim [ |fu— P du= [ 0du=o0,

n—oo
which gives that || f, — f]|, = 0 as n — oo, as desired. [ |

Let p € [1,00). It follows from Corollary that we obtain a normed
space LP by identifying functions in £ that agree p-a.e. To achieve this in
a formal way, we first define a relation ~ on LP by setting

f~g< =9 pae

for f,g € LP. In other words, f ~ g < |[|f—g|l, = 0. It is almost immediate
that ~ is an equivalence relation, and we will denote the equivalence class
of f € LP by [f], that is, we set

f:={9eLr:f~g}
It is then a routine matter to check that

Lr=I/(X, A p) = {[f]: f € £}

12



2.1. Thecasel <p<

becomes a normed space w.r.t.

T+ 19l =1F+gl AUT=ATL T = (11l

where f,g € L and A € C. (The reader may consult Exercise [2.1|for a more
general statement.) Moreover, we have:

Theorem 2.1.5. Let p € [1,00). Then (LP, | - ||,) is a Banach space.

Proof. Let {[fn]}nen € LP be such that >-0°, ||[fa]ll, < 00, i.e., such that
S =30 | full, < 0o. According to Theorem we have to show that
the series Y% [ f,,] is convergent in LP. It suffices to show that there exists
some F € LP such that limy o || SN, £ — F|l, = 0, because this will give
that

N N
Jim @ ol = (U = Jim 0[S S = FJlp = Jim 1132 o= Fll =0,

thus showing that >°° |[f,] converges to [F] in LP.

For each N € N, set gn := >N, |fu|. Also, let g : X — [0, 0] be given
by

=> |fulz)] forallz € X.
n=1

Clearly, the sequence {g%} of A-measurable nonnegative functions is nonde-
creasing, and it converges pointwise to the A-measurable function ¢? on X.
Further, using Minkowski’s inequality, we get

N N
lgnlly < DN fallly =22 Ifully < S
n=1 n=1
for all N € N. Hence, using the Monotone Convergence Theorem, we get
Py — T p — T P < Gp
/X 9" dp ngnoo/x gn dp = lim [lgn[} < 5P < oo.

Since gP > 0, it follows from [L; Exercise 7.5.6] that ¢? is finite p-a.e., hence
that ¢ is finite p-a.e. This means that the series Y00, f,(z) is absolutely
convergent for every x belonging to some E € A such that u(E¢) = 0. We
may therefore define F' € M by

Plz) = > fale) ifzeE,
0 if x € E°.

With Fy := > | f, we then have |Fy| < gy < g € LP for every N € N,
and Fy — F' pointwise p-a.e. on X as N — oo. Proposition [2.1.4] gives
now that F' € £P and limy_,o || Fy — F||, = 0, as we wanted to show. W

13



2. On LP-spaces

2.2 The case p =

We now consider the case p = oco. Let F(X) denote the vector space
consisting of all complex functions on X (with its natural operations).
By an algebra of complex functions on X, we will mean a subspace of
F(X) which is also closed under pointwise multiplication. For example,
M = M(X, A) is an algebra of complex functions on X. Another natural
algebra is the one consisting of those functions in M which are bounded.
We will actually be interested in a slightly larger algebra.

Definition 2.2.1. A function f € M is said to be essentially bounded
(w.r.t. p) if there exists some real number M > 0 such that

[l <M pae,

in which case we set || f||c := inf {M >0:|f| <M ,u—a.e.}.

Example 2.2.2. a) Asume g € M is bounded and set ||g]|., := sup,ex |g(x)|.
Then g is essentially bounded (w.r.t. x1), and we have

9lloe < N9l -

Indeed, we have ,u({:c € X :|g(x)] > ||g||u}) = p(2) = 0. This gives that
lg| < |lg|l. p-a.e., and both assertions follow readily.

We note that it may happen that ||g|| < [|g]|.. For example, consider
the Borel function g on X = R given by g = x4o}; letting ;2 be the Lebsgue
measure on Bg, we get

19llec =0 <1 ={lgllu -

b) Consider X = [0, 00), A = the Borel subsets of X and pu = the Lebesgue
measure on A. Let f € M be given by

f(l’) :eim+z TLX{er}(J]), r>0.
n=1

Then f(2k7m) = k+1 for every k € N, so f is unbounded. On the other hand,
f is essentially bounded (w.r.t. ), with || f]je = 1, since ,u(|f|_1((M, oo)))
isequal to 0 if M > 1 and to co if 0 < M < 1.

The following useful observation may seem obvious, but it requires a
proof.

14



2.2. Thecase p=o0

Lemma 2.2.3. Let f € M be essentially bounded (w.r.t. p). Then we have

< fle peace (2.2.1)

Proof. Set B :={z € X : |f(z)| > || fll~} € A and assume (for contradic-
tion) that p(B) > 0. For each n € N, set

Bn:_{xeX:|f(:r:)\>||f||oo+1}€A.

n
Clearly, B,, C B, for every n, and B = J;”, B, so we have

lim p(B,) = u(B) >0.

n—o0

Hence there must exist at least one N € N such that u(By) > 0. Now, by
definition of || f||c, we can find M > 0 such that || f|lc < M < || f|lc+ and
|f] < M p-a.e. But this implies that | f| < || fl|ec + % p-a-e., ie., u(By) = 0,
and we have reached a contradiction. |

Using Lemma [2.2.3] it is straightforward to verify that the set £> =
L2(X, A, 1) consisting of all functions in M that are essentially bounded
(w.r.t. p) is an algebra of complex functions on X (cf. Exercise[2.9). Another
application is the following Holder-type inequality:

Proposition 2.2.4. Let q € [1,00), f € L>® and g € L1. Then fg € L1
and

1fglly < [fllo [lgllq -

Proof. Using Lemma [E2.3] we get that |fgl? = |f]7]gl7 < |f2, lgl p-a.c.
It follows that

J Vol di < NS [ lol” dpe < oo
X X

Hence fg € L. Moreover, taking the ¢-th root, we obtain the desired

inequality. [ ]
Convergence in £ with respect to || - ||« is closely related to uniform
convergence:

Proposition 2.2.5. Let {f,}nen € L and f € L>®. Then we have that
I f — fllo = 0 as n — oo if and only if there exists some E € A such that
w(E) =0 and f, — f uniformly on E.

15



2. On LP-spaces

Proof. Assume ||f, — flloc = 0 as n — oco. For each n € N, set
Fo=A{w e X [fulx) = f(@)| > |[fo = fllc} € A

Since f, — f € L, we have u(F,) = 0 for each n. Hence, F' := Uyen Fy, € A
and p(F) = 0.
Set now E := F° € A. Then p(E°) =0 and

E={ze X :|fulx)— f(x)| <||fu — fllo for all n € N}.

It is then obvious that f,, — f uniformly on E. The proof of the reverse im-

plication goes along the same lines, and we leave it as an exercise (cf. Exercise
2.11])). [ |

As with the LP-spaces for 1 < p < oo, an annoying fact is that in general
|| |lo is only a seminorm on £>°. To get a norm we have to identify functions
that agree p-a.e. Thus, for each f € L weset [f] = {g € L : g = [ p-a.e.}.
Then

L= L1°(X, A ) = { [f]: f € £}

becomes a vector space w.r.t. the operations given by [f] + [g] := [f + g],
AL == [Af] (where f,g € £2 and A € C), and [|[f][[ec := [[fllo gives a
norm on L™ (cf. Exercise [2.1]).

Theorem 2.2.6. (L™, || - [|«) is a Banach space.

Proof. We have to show that L is complete w.r.t. the metric associated
with || - [|c-

Let {[fn]}nen be a Cauchy sequence in L. So each f,, belongs to £
and for any given € > 0, there exists some N € N such that

m,nZN = || [fm]_[fn} ||<>0 <ég,

that is,
mn>N = || fo— follo < €. (2.2.2)

For each m,n € N, set
Frg = {2 € X [fu(@) = ful@)| > [l = fulloo } -
Then F,,, € Aand u(F,,,) =0 for all m,n € N (because f,, — f,, € L>).
Next, set F':= U neny Finn € Aand £ := F°c A

16



2.2. Thecase p=o0

Note that p(E£¢) = p(F) = 0 (since 0 < p(F) < 3, nen #(Fmn) = 0).
Moreover,

E= ( Fan)= () {z€X: |ful@) = fa@)| <l fm = falloo}

m,neN m,neN

= {2 € Xt |fu(@) = fa(@)] < lfm = falloo for all m,n € N}.

Let now £ > 0 be given, and choose N € N such that (2.2.2)) holds.
Then for all x € F and all m,n > N, we have

[fm(2) = fo(@)] < [ fo = finllo < €. (2.2.3)

It follows that {f,(z)}nen is a Cauchy sequence in C for each z € E. Since
C is complete, this implies that {f,(x)},en is convergent for each =z € E,
hence that lim,, o fn(z) = g(z) for some g(z) € C for each x € E. Thereby
we obtain a function g : EF — C, which is Ag-measurable since g is the
pointwise limit of the restriction of the f,’s to E. (Here, Ag denotes the
o-algebra of all sets in A which are contained in F).

We can now extend g to an A-measurable function f : X — C by setting
f(z) =g(z) if x € E, and f(z) = 0 otherwise.

Again, let € > 0 be given and choose N as above. Then, for all x € E
and all m € N such that m > N, we get from (2.2.3)) that

@) = £@)] = | (@) = 9(@)] = lin |fnle) = Ful)] < <.
This implies that {f,, }men converges uniformly to f on E.

Moreover, set D := EN{z € X : |fn(x)] < ||fnlleo} € A. Then we
have

[f(@)] = 1f(x) = fn(z) + (@) < [f(2) = fn(@)] + [ fn(@)] < e+ [ vl
for all z € D. As
0< u(D) < p(F)+p(fz € X : |fx(@)] > | fxlle}) =0,
we have p(D°) =0, so
[fl <e+fnlloe pae.

This shows that f € £°°. Using Proposition [2.2.5, we can now conclude
that ||, — flleo = 0 as m — oco. Thus

1 {fm] = [ lloo = I1fm = flloc — 0 asm — oo.

This means that {[f,]};en converges to [f] in L>. We have thereby shown
that every Cauchy sequence in L™ is convergent and the proof is finished.
|
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2. On LP-spaces

2.3 Exercises

Exercise 2.1. Let V' be a vector space (over F) and let || - || denote a
seminorm on V. Define a relation ~ on V' by setting

v~ew S lv—wl =0
for v,w e V.

a) Check that ~ is an equivalence relation.

Denote the equivalence class of v € V' by [v], that is,
[v] ::{wEV:vww},
and set V := {[v] tvE V}. Moreover, for v,w € V, and X € F, set
o] + [w] = [o+w],  A]:= o], o] ]| = ol

b) Show that these operations on V are well-defined, that is, show
that if v, v, w,w" € V are such that v ~ v, v’ ~ w, and A\ € C, then
(V' +w') ~ (v4+w), W ~ v and ||| = ||v]].

¢) Verify that (V, || - ||) is a normed space. (Check at least three of the
axioms.)

In the following exercises, unless otherwise specified, (X, A, i) denotes a
measure space and M denotes the space of A-measurable complex functions
on X.

Exercise 2.2. Assume that X = [1,00), A = the Borel subsets of X and
is the Lebesgue measure on A. Let f € M be given by

1
flz)=— forallz>1,

and let 1 < p < co. Show that f € LP(X, A, p) if and only if p > 1, and
compute || f||, in this case.

Exercise 2.3. Assume that X = R, 4 = the Borel subsets of X and p is
the Lebesgue measure on A. Let f € M be given by

flz)=e™ forall z €R.

Show that f € LP(X, A, u) for all p € [1,00) and compute || f]|,. (You are
allowed to use that limy_,« | iVN e dt = /7 without proof.)
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Exercise 2.4. Assume that X = (0, 1], A = the Borel subsets of X and pu
is the Lebesgue measure on A. Let f € M be given by

flz) = = for all x € (0, 1],

NS
and let 1 < p < 0.

a) Show that f € LP(X, A, p) if and only if p < 2, and compute || f||, in
this case.

b) Let v be the measure on A given by

V(A) = /A v du(z) forall Ac A
Show that f € LP(X,A,v) if and only if p < 4, and compute | f||, in
this case.

Exercise 2.5. Assume that X = [1,00), A = the Borel subsets of X and p
is the Lebesgue measure on A. For each n € N, define f,, € M by

a) Show that f,, € L for all n € N whenever 3 < p < 0.

for all z > 1.

b) Assume that 3 < p < co. Decide whether the sequence {[f,]}nen is
convergent in LP and find its limit if it converges.

Exercise 2.6. Let p € [1,00). Let £ denote the space of simple functions in
M and £° denote the subspace of £ spanned by {x4: A € A, u(A) < oo}.

a) Show that £% = &N LP.

b) Let f € LP. Show that there exists a sequence {g,} in £° such that
lf — gull, = 0 as n — oo. Deduce that the space

£ == {lg] : g € £°}
is dense in L” with respect to || - |[,.

Exercise 2.7. Let a,b € R, a < b, A denote the Lebesgue measurable
subsets of X = [a,b] and u denote the Lebesgue measure on A. Finally, let
C(la, b]) denote the space of all continuous complex functions on [a, b]. Let
p € [1,00).

a) Let A€ Aand § > 0. Show that there exists some k € C([a, b]) such
that ||xa — k||, < 0.

b) Use a) and Exerciseto show that the space {[f] : f e C([a, b])} is
dense in LP([a,b], A, 1) with respect to || - |[[,.
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2. On LP-spaces

Exercise 2.8. Assume that X = R, A = the Lebesgue measurable subsets
of R and p is the Lebesgue measure on A. Say that a function f: R — C
has compact support if f = 0 outside some closed, bounded interval. Let
C.(R) denote the space of all continuous complex functions on R which have
compact support. Let p € [1,00).

Show that the space {[f] : f € C.(R)} is dense in L” with respect to
- 1lp-

Exercise 2.9. Check that || - ||oo is @ seminorm on £ (so that || - ||« gives
a norm on L>). Check also that £ is an algebra of functions on X and
that we have ||fgllcc < ||floo ||g]|oo for all f,g € L.

Exercise 2.10. Let f € M. Show that f € £ if and only if there exists
a bounded function g € M such that f = g p-a.e., in which case we have

| fllo = inf{||g|l. : g € M is bounded and g = f p-a.e.}.

Exercise 2.11. Finish the proof of Proposition 2.2.5

Exercise 2.12. Let 1 < p <r < oo and X be a nonempty set. Show that
P(X) CUT(X) C2(X).
Exercise 2.13. Let p € [1,00) and assume that (X, A, u) is finite, that is,
pu(X) < oo.
a) Show that £>* C LP.
b) Consider 1 < p <r < oo and let f € L". Show that f € LP and

1
T

11l < w(X)F7 || £l

Hint: Use Holder’s inequality in a suitable way.
Note that this shows that £" C £P. In particular, we have £* C £2 C L'

¢) Consider the Lebesgue measure on the Borel subsets of R. Give an
example of a function which is in £2, but not in £! Give also an example of
a function which is in £°°, but not in £2.

Exercise 2.14. Let £ denote the space of simple functions in M and let f €
L. Show that there exists a sequence {h,} in € such that ||f — hpllec — 0
as n — oo. Deduce that the space [E] := {[h] : h € £} is dense in L™ with
respect to || - ||co-
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CHAPTER 3

More on normed spaces and
linear operators

3.1 Aspects of finite dimensionality

Unless otherwise specified, we always assume that the space F", n € N, is
equipped with the Euclidean norm || - ||o given by

1/2 .
|zl = (\Sﬁ!Q +- 4 \xn\Q) for x = (xq,...,2,) € F",

and with the metric induced by this norm. As we recalled in Section 1.1,
all norms on a finite-dimensional vector space are equivalent. The usual
way to prove this is to consider first " and show that any other norm on
F™ is equivalent to || - ||. A crucial fact in the proof is that a subset of
F™ is compact (w.r.t. the metric associated with || - ||2) if and only if it is
closed and bounded. It will be useful for us to know that this property,
sometimes called the Heine-Borel property, holds in any finite-dimensional
normed space. We will need the following lemma.

Lemma 3.1.1. Let X and Y be finite-dimensional normed spaces. Assume
that X andY are isomorphic as vector spaces and let T € L(X,Y) be an
isomorphism. Then T is an isomorphism of normed spaces.

Proof. We have to show that T and T~! are bounded. To avoid confusion,
we let || - || and || - || denote the respective norms on X and Y. For xz € X

set
x|z == [T ()]

Clearly, the map x — ||z||r is a seminorm on X; in fact, it is a norm since

HIHT =0 < HT(x)”/ =0 & T(g;) =0« 2=0,



3. More on normed spaces and linear operators

the last equivalence being a consequence of the injectivity of 7. Since X is
finite-dimensional, || - ||z is equivalent to || - ||. In particular, this means that
there exists some C' > 0 such that

1T (@) = ||zllr < Clz| forall z € X,

which shows that 7' is bounded. Similarly, by considering the norm on
Y given by ||yllr-1 := [T (y)|| for y € Y, one deduces that T—! is also
bounded. |

Proposition 3.1.2. Let X be a finite-dimensional normed space. Then a
subset K of X is compact (w.r.t. the metric induced by the given norm) if
and only if K is closed and bounded.

Proof. Since a compact subset of a metric space is always closed and bounded,
we only have to show the reverse implication. So let K C X be closed and
bounded. We must show that K is compact. If X = {0}, this is obviously
true, so we may assume that m := dim(X) > 1. Let then 7 : X — F™
denote the coordinate map w.r.t. some basis for X. Lemma gives
that 7" is an isomorphism of normed spaces. Set K’ :=T(K) C F™. Then
K’ is bounded (since T" is bounded). Moreover, K’ is closed. Indeed, as
K' = (T7Y)7YK), this follows from the continuity of 7~'. By the Heine-
Borel property of F™, we can conclude that K’ is compact. As K = T~1(K")
and 77! is continuous, this implies that K is compact, as desired. |

Since the unit ball X; of a normed space is closed and bounded we get:

Corollary 3.1.3. The unit ball X, of a finite-dimensional normed space X
1s compact.

We note that if X is an infinite-dimensional normed space, then X; is
not compact. (See Exercises and ) In particular, this implies that an
infinite-dimensional normed space never has the Heine-Borel property.

Another property which is automatically satisfied for a finite-dimensional
normed space is completeness:

Proposition 3.1.4. Let X be a finite-dimensional normed space. Then X
is a Banach space.

Proof. We may clearly assume that X # {0}. To show that X is complete,
we let {2, }nen be a Cauchy sequence in X and have to prove that it is
convergent. As in the proof of Proposition[3.1.2] we can pick an isomorphism
of normed spaces T': X — F™, where m = dim(X). For each n € N, set
Yn = T(xy). Since |[yn = yrlla = [T (20 — zp)ll2 < [T [l — x| for all
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3.1. Aspects of finite dimensionality

k,n € N, we see that {y,}n,en is a Cauchy sequence in F™. Since F™ is
complete, there exists y € F™ such that ||y, — y|ls — 0 as n — oco. Set
z:=T7(y) € X. Then we get

lzn =2 = 1T (o =9Il < T lya —yllz = 0 asn — co.
Thus, {z, }ren is convergent, as desired. [ |

Corollary 3.1.5. Assume M is a finite-dimensional subspace of a normed
space X. Then M is closed in X .

Proof. Assume {x,},en € M converges to z € X. We have to show that
x € M. As M is complete by Proposition and {x, }ney is a Cauchy
sequence in M, it follows that {z,},en converges to some y € M. Thus we
get that z = lim,, oo x, =y € M. [ |

Finite dimensionality has also some impact on linear operators.

Example 3.1.6. Let m,n € N and let 7" € L(F",F™). Then T is bounded.

Indeed, let A = [a;;] denote the standard matrix of 7. Then we have
T(z) = (Fi(z),..., F(r)), where Fj(z) := >, a; 7 foreachi=1,...,m
and x = (xy,...,2,) € F". Since each component F; is clearly a continuous

function from F” to F, we get that T is continuous, and therefore bounded.
More generally, we have:

Proposition 3.1.7. Let X and Y be normed spaces and let T € L(X,Y).
Assume that X is finite-dimensional. Then T is bounded.

Proof. By replacing Y with T'(X) if necessary, we may assume that Y is
finite-dimensional. Moreover, we may also assume that both X and Y are
different from {0}. Set n = dim(X),m = dim(Y), and let C : X — F",
D :Y — F™ be isomomorphims, which are then necessarily isomorphisms of
normed spaces by Lemma [3.1.1] The composition 7" := D o T'o C~! is then
a linear map from F” to F"™, hence it is bounded by the previous example.
It follows that T'= D~ o T” o C, being the composition of bounded maps,
is bounded. [

Note that the above result is not true in general if we instead assume that
Y is finite-dimensional, even in the case where Y = FF: a linear functional
T : X — F may be unbounded when X is an infinite-dimensional normed
space. For an example, see Exercise [3.3
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Definition 3.1.8. A linear operator 7' : X — Y between two vector spaces
X and Y is said to have finite-rank if the range of T' is finite-dimensional,
ie., if dim(7(X)) < oc.

It is obvious that a linear functional on a normed space has always
finite-rank. As such a linear functional can be unbounded, we get that
a finite-rank linear operator T between normed spaces is not necessarily
bounded; in fact, it can be shown that such an operator 7' is bounded if and
only if ker(T") is closed. Bounded finite-rank operators have the following
interesting property:

Proposition 3.1.9. Let X andY be normed spaces over F, and assume that
T € B(X,Y) has finite-rank. Then, for any given bounded sequence {x, }nen
in X, we have that the sequence {T(z,)}nen has a convergent subsequence
mnY.

Proof. Assume {x,},en € X satisfies ||z,]| < M for all n € N for some
M > 0. Then we have

1T ()l < TN lall < T M

for all n € N. Now, the ball B:={y €Y : |y| < ||T|| M} is closed in Y.
Considering T'(X) as a normed space w.r.t. to the norm it inherits from
Y, we get that the set K := T'(X) N B is a closed and bounded subset of
T(X). Since T(X) is finite-dimensional (by assumption), it follows from
Proposition that K is compact in T'(X). As {T(x,)}nen is a sequence
in K, we can therefore conclude that it has a convergent subsequence. WM

An operator T € L(X,Y) satisfying the property described in the
conclusion of Proposition is said to be compact. We will have a closer
look at this important class of operators in Chapter
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3.2. Direct sums and projections

3.2 Direct sums and projections

We first discuss the concepts of direct sums and projections in a purely
linear algebraic setting. Let X be a vector space over F, and let M; and M,
be subspaces of X. We define the sum of My and M, as the subset of X
given by

My + My = {Il 4+ a9 21 € My, 29 € MQ}

It is straightforward to verify that it the least subspace of X containing
both M1 and MQ.

Definition 3.2.1. We will say that X is the (internal) algebraic direct sum
of My and My, and write X = M, + M, , when

X =M, +M, and M; N M,={0}.
Obviously, we have X = M; + M, if and only if X = M, + M, .
We first make a simple, but fundamental, observation:
Lemma 3.2.2. The following two conditions are equivalent:
(i) X =M, + M, ;

(77) every x € X can be written in a unique way as r = x1 + xo with
1 € My and x9 € M,y .

Proof. Assume (i) holds and let € X. Then we have © = z; + x5 for some
x1 € My, x9 € My. If we also have x = 2| + 2, for some 2 € My, 2, € My,
then we get

Jfl—l'/lzl'/z—xg e MiNM,.

Since M; N My = {0}, this implies that 2{ = z; and 2, = x5. Thus (i)
holds.

Conversely, assume (i) holds. It then obvious that X = M; + M,.
Consider y € M; N M,. Then we have y = y + 0 with y € My, 0 € Mo,
and y = 0+ y with 0 € My, y € M,. By uniqueness, we get y = 0. Thus,
M, N My = {0}, so (i) holds. |

Remark 3.2.3. If V; and V5 are vector spaces over F, then one may form
their direct product V; x V4, which is often called the (external) algebraic
direct sum of V; and V5. (This concept is presumably well-known; the
definition is recalled in Exercise [3.5). In the case of an (internal) algebraic
direct sum X = M, 4+ M, it can easily be verified that X is isomorphic to
My x M.
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3. More on normed spaces and linear operators

Example 3.2.4. a) Let X be the space of all n x n matrices over IF, and let
M; (resp. Ms) denote the subspace of X consisting of all upper (resp. lower)
triangular matrices in X. Then it is obvious that we have X = M; + M, ;
but X is not the algebraic direct sum of M; and M, since My N My consists
of all the diagonal matrices.

b) Let X be the space of all n x n matrices over R, and let M; (resp. My)
denote the subspace of symmetric (resp. skew-symmetric) matrices in X.
(We recall that A € X is called skew-symmetric when A" = —A.) Then we
have X = M, + M,. Indeed, if A € X, then A = A, + A,, where

1 1
Al = §(A+At) c M1 and A2 = 5(14 - At) c M2 .
Moreover, if A € My N M,, then we have A = A' = —A, so A = 0.

There is a tight connection between projection operators and directs
sums.

Definition 3.2.5. Let X be a vector space. An operator P € L(X) is
called a projection when P is an idempotent map, that is, when it satisfies
P2=P.

One readily checks that P € £(X) is a projection if and only if I — P is
a projection. We leave it as an exercise to check the following:

Proposition 3.2.6. Assume X = M, + M,, and define P, Py : X — X by
Pi(x) =21, Pa(x):=mx9,

whenever x = x1 + xo with x1 € My and x9 € M.
Then Py, Py are projections in L(X) such that

P+P =1 PP =PFPP =0,

P (X) = M; =ker(P,) and Py(X) = My = ker(Py).

The map Py is called the projection (from X) on M, along My, while the
map Py is called the projection (from X') on My along M.

Example 3.2.7. Consider X = R?. The most familiar direct sum decom-
position of R? is of course

R2:M1+M2
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where M; = {(s,0) : s € R} and My = {(0,¢) : t € R}, in which case P, and
P; are the usual coordinate maps, i.e.,

Pi((s,t)) = (s,0) and P((s,t)) = (0,t).

However, there are infinitely ways of writing R? as a direct sum, even if
we fix M; to be the first axis: indeed, we can then let My be any line
through the origin which is different from M;. For example, if we choose
My = {(t,t) : t € R}, then M; N My = {(0,0)}, and for any (u,v) € R? we

have
(u,v) = (u—0,0)+ (v,v), with (u—v,0) € My and (v,v) € M.

Thus, in this case, we get that the projection maps Py, P, : R? — R? are
given by Pi((u,v)) = (u—v,0) and Py((u,v)) = (v,v) for all (u,v) € R

A converse to Proposition [3.2.6] is the following:
Proposition 3.2.8. Assume P € L(X) is a projection. Then we have
X = P(X) + ker(P).

Moreover, we have P(X) = ker(I — P), ker(P) = (I — P)(X), and P is the
projection from X on P(X) along ker(P).

Proof. Let x € X. Note that
r=P(x)+ (x — P(x)). (3.2.1)

Since

P(z - P(z)) = P(x) — P*(z) =0,

that is, (z — P(x)) € ker(P), this shows that X = P(X) + ker(P).
Next, assume that x € P(X)Nker(P). Thus we have x = P(y) for some
y € X and P(z) = 0. This gives that

v = P(y) = P*(y) = P(P(y)) = P(z) = 0.

Hence, P(X) Nker(P) = {0}, so X = P(X)+ ker(P).
If we now set M; := P(X) and M, := ker(P), then, using the notation

from Proposition [3.2.6, we get from equation (3.2.1) that P, = P and
P, =1 — P, so the last assertions follow readily from this proposition. W
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Remark 3.2.9. If M; is a subspace of a vector space X, then it can be
shown that M; can be algebraically complemented, i.e., that there exists
a subspace M of X such that X = M; + M,. (In fact, if {0} # M; # X,
then there exist infinitely many such subspaces, which are all isomorphic to
each other.) When X is infinite-dimensional, the proof requires the axiom
of choice, in the form of Zorn’s lemma, as explained in more advanced
textbooks.

We now turn our attention to normed spaces.

Definition 3.2.10. Assume that X is a normed space over F, and let M;
and My be subspaces of X. We will say that X is the (internal) direct sum
of My and Ms, and write

X =M & M,

when X = M, + M,y and both M, and M, are closed in X.

Proposition 3.2.11. Let X be a normed space and assume P € L(X) is a
projection which is bounded (so P € B(X)). Then we have

X = P(X) & ker(P).

Proof. We know from Proposition [3.2.§] that X = P(X)+ ker(P), so it
remains only to check that P(X') and ker(P) are closed in X. Since ker(P) =
P~1({0}) and P is continuous, ker(P) is closed. Moreover, since P(X) =
ker(I — P) and I — P is continuous, we also get that P(X) is closed. W

Example 3.2.12. Let V4, V5 be normed spaces over F. As is readily verified
(if not already known), the direct product V' :=Vj x V5, becomes a normed
space with respect to the norm given by

[[(01, v2) | := Jloa ]| + ozl -
Moreover, yvithJN/l = {(v1,0) : v, € Vi} and Vy := {(0,12) : vy € V3}, we

have V = Vi +V, (cf. Exercise . Let P, € £(V') denote the projection
from V on Vj along V5. Then

1P1((01, v2)) | = [[(01, 0)[| = [loall + [[0]] = [lva ]} < [ (vr, v2)]

for all (vy,vy) € V, s0 Py is bounded. Thus, Proposition |3.2.11] gives that
V =P(V)@ker(P). As P(V) =V, and ker(P,) = V3, we get that

VixVo=V, @ V;.
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Remark 3.2.13. Somewhat surprisingly, if X is a normed space and X =
M & M, for some closed subspaces My, Ms, then it may happen that the
projection P; from X on M, along M, is unbounded (cf. Exercise , in
which case the projection P, on M, along M is also unbounded (since
P, + P, = I). However this peculiarity does not arise if X is a Banach
space, but the proof of this fact is beyond the scope of these notes. (One
may for example invoke the so-called closed graph theorem, proven in more
advanced courses).

Remark 3.2.14. It is common to say that a closed subspace M of a normed
space X can be complemented when there exists a closed subspace N of X
such that X = M & N. It is not true that a closed subspace can always be
complemented, even if X is a Banach space; for example, it is known that
the closed subspace

co(N) = {f € £(N) : lim f(n) = 0}

can not be complemented in ¢*°(N) (with uniform norm), but we don’t have
vet the tools necessary to prove this. Proposition tells us that if a
closed subspace M of a normed space X is the range of a projection P in
B(X), then M can be complemented. The previous remark implies that the
converse holds when X is a Banach space. It is also known that a finite
dimensional subspace of a normed space can always be complemented. We
will see in the next chapter that any closed subspace of a Hilbert space can
be complemented (by its orthogonal complement).

Direct sums and projections are useful in connection with the study of
linear operators.

Proposition 3.2.15. Assume X is a vector space such that X = M; + M,
for some subspaces My, My. To each Sy € L(M;) and Sy € L(Ms), we may
associate an operator S = S1+Sy € L(X) given by

(S1+S2)(x) := Si(w1) + Sa(2)

forx = x1 + 19 € X with x1 € My and x5 € M.

If Py (resp. Py) denote the projection from X on My along My (resp. on
M, along M), then S = S1+Sy commutes with each P;, that is, we have
SP; = P;S forj=1,2.

Moreover, if X is a normed space, My and M, are closed in X, and P,
is bounded (or, equivalently, Py is bounded), then Sy+Ss is bounded if and
only if S1 and Sy are bounded.

(Note that if X is a Banach space, then Py and P» are automatically
bounded, as mentioned in Remark[3.2.13).
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Proof. The reader should have no difficulty to provide the necessary details,
so we leave this as an exercise. [ ]

Definition 3.2.16. Let notation be as in Proposition [3.2.15] When an
operator S € L(X) can be written as S = 51455 for some S; € L(M;) and
Sy € L(My), then we say that S is decomposable w.r.t. X = M, + Ms.

When an operator is decomposable w.r.t. a direct sum decomposition, we
may study it by studying each of its components. It is therefore of interest
to know when this happens. The following notion will be useful.

Definition 3.2.17. Let X be a vector space and T' € £(X). A subset M
of X is said to be invariant under T when T'(M) C M.

Example 3.2.18. Let notation be as in Proposition [3.2.15] and set

S := S+, € L(X). Then M; and M, are both invariant under S. Indeed,
if 1 € M, then S(z1) = Si(z1) € M;. Similarly, S(zy) € M, for all
To € MQ.

Example 3.2.19. Assume X is a vector space over F and T' € £(X). The

range of 1" is then a subspace of X which is invariant under 7": indeed, with
M =T(X), we have T(M) CT(X) = M.
Moreover, for A € I, set

ET = ker(T — \I) .

Then ET is also a subspace of X, which is invariant under 7T": indeed, for
every x € EY, we have T(z) = Az € Ei. Of course, when Ei # {0}, then
A is an eigenvalue of T', and EY is the associated eigenspace.

Proposition 3.2.20. Assume X is a vector space over F such that X =
M + My for some subspaces My, M. Let Py (resp. Py) denote the projection

on My along My (resp. on My along M) and consider S € L(X). Then the
following conditions are equivalent:

(a) S is decomposable w.r.t. X = My + My;
(b) both My and My are invariant under S ;
(¢) S commutes with P ;

(d) S commutes with P; .
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Proof. 1f (a) holds, then it follows from Proposition |3.2.15| that (c¢) and (d)
hold. Since P, = I — Py, it is elementary that (c) is equivalent to (d).
Assume that (c¢) holds. Let x; € M;. Then we have

S(l'1> = S(P1<l'1>) = Pl(S<(L'1)) c Pl(X) = M1 .

Thus, M; is invariant under S. Moreover, as (d) also holds, we get in a
similar way that M, is invariant under S. Hence, (b) holds.
Finally, assume (b) holds. Then, for j = 1,2, we may define S; € L(M;)
by
Sj(x;) == S(x;) forall x; € M;.

Let x € X. Then x = x1 + x5 for 1 € M; and x5 € M,, so we get
S(ZL‘) = S(ZL‘l + 1'2) = S(?L’l) + S(ZL‘Q) = Sl(l’l) + SQ(I’Q) = (Sl‘I—SQ)(ZL‘) .
This shows that S = S;+S5, hence that (a) holds. |

Remark 3.2.21. Assume that X is a vector space over F and T' € L(X)
has an eigenvalue A € F. (For example, if X is finite dimensional and F = C,
then every 7' € £(X) has an eigenvalue). A natural question is then whether
the eigenspace M; = EY| which is invariant under 7', can be complemented
in X by some subspace My which is also invariant under 7. This may not be
the case (see Exercise , but if it happens, then we have T' = Xy, + T
where T5 = Ty, € L(M,), and we can focus on Ty. Moreover, in good cases,
one can proceed further in an inductive way. This is basically the main idea
used in the proof of the spectral theorem for symmetric real matrices. The
same idea can also be used for compact self-adjoint operators on Hilbert
spaces.

Finally, we mention for completeness that one can also consider direct
sums decompositions of a vector space with more than two summands.

Let X is a vector space over I, and assume that My, Ms, ..., M, are
subspaces of X. Then X is said to be the (internal) algebraic direct sum of
My, My, ..., M, it X = M;+ Ms+---+ M, and the following independence
condition holds: if 1 € My, 29 € M>, ..., x, € M, and

T+ a2+ +a, =0,
then 21 = 29 =--- =1, = 0. We leave it as an easy exercise to check that
these two conditions are equivalent to requiring that every x € X can be

written in a unique way as x = xy + -+ -+ x, with z; € My, ..., x, € M,.
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3.3 Extension by density and continuity

This short section is devoted to a very useful principle in linear analysis,
often called the principle of extension by density and continuity. We will
need the following elementary lemma, which is probably well-known.

Lemma 3.3.1. Assume that X and Y are metric spaces and f,qg are con-
tinuous maps from X to'Y which agree on a dense subset Xy of X. Then

f=g

Proof. Let x € X. Since X is dense in X, there exists a sequence {x, }nen
in Xy which converges to x. By continuity of f and g, we get

f(x) =T f(z,) = lim g(z,) = g(z). =

Theorem 3.3.2. Assume that X is a normed space and Y is a Banach
space (both over F). Assume also that Xo is a dense subspace of X, while Yy
is a subspace of Y. Let Ty € B(Xo,Yy). Then Ty extends in a unique way to
an operator T € B(X,Y). It satisfies that ||T'|| = || To]|-

Proof. Let x € X. Since X is dense in X, there exists a sequence {x, },en
in Xy such that || —x,| — 0 as n — co. In particular, {x, },en is a Cauchy
sequence in Xy. We claim that {To(x,)}.en is a Cauchy sequence in Y.
Indeed, let £ > 0, and choose N € N such that

|zm — x| < €/||To]] for all m,n > N .
Then, for all m,n € N, we get
[To(xm) = To(zn) |l = 1To(xm — zn)ll = [ Tol lzm — zall < &,

as desired.

Since Y is complete, we can conclude that there exists some y € Y
such that lim, Ty(z,) = y. Note that y only depends on z. Indeed, as-
sume {z] },en is another sequence in X, converging to x. Then the se-
quence Ty, Ty, To, xh, ..., Ty, 2, ... in Xy also converges to x, so, arguing
as above, we get that there exists some 2z € Y such that the sequence
To(xy), To(x}), To(xe), To(xh), ..., To(xy,), To(x,), . .. converges to z. This
implies that

lim Ty(a,) = 2z = lim Ty(z,) = y.

Hence it makes sense to define T'(z) := y. Doing this for every z € X, we
get amap T : X — Y, and it is easy to check that T is linear, so we leave
this as an exercise.
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Next, we show that T is bounded. Let x € X and pick {x, },en in X
converging to x. As T'(z) = lim,, To(x,) and [|To(z,)| < ||To]] ||z, for all
n € N, we get

1T () || = lim (| To(zn)[| < [Tl tim [z || = | To ]} [l

It follows that T' € B(X,Y) with ||T]| < ||To]l-

Further, T is an extension of Tj. Indeed, let x € X,. Then set z,, :=x
for all n € N. Since {x, },en is a sequence in X converging to =, we get
that

T(x)= lim To(xy,) = To(x).

The uniqueness of T as an extension of 7Tj is immediate from Lemma
Finally, we have

[To[l = sup{[|To(x)[| : @ € Xo, [|=f| < 1}
= sup{[|T(z)] - = € Xo, ||| < 1}
< sup{|[T(2)]| - v € X, [l]| <1} = [|T]| < [|Toll-

Thus, ||T|| = [|Tb]|, as desired. |

Remark 3.3.3. The conclusion of Theorem [3.3.2] is not necessarily true if
Y is a normed space which is not complete (cf. Exercise [3.15)).

An interesting special case of Theorem [3.3.2]is when T} is an isometry.
We recall that a linear map between normed spaces is an isometry when it
is norm-preserving. A linear isometry is clearly bounded.

Corollary 3.3.4. Assume that X is a normed space, Y is a Banach space,
Xy is a dense subspace of X, Yy is a subspace of Y, and Uy € L( Xy, Yo) is
an isometry. Then the unique extension of Uy to an operator U in B(X,Y)
is also an isometry.

Proof. Theorem [3.3.2] guarantees that Uy extends in a unique way to U €
B(X,Y). Let z € X and pick {x, },en in Xy converging to x. We then have
U(z) = lim,, Uy(x,), so we get

1) ]| = Tim [[Uo ()| = lim [[z [} = ]|

Using Corollary [3.3.4] it can be shown that the completion of a (non-
complete) normed space is unique up to isometric isomorphism (cf. Exercise
3.17)). We also record an important particular case of Theorem [3.3.2]
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Corollary 3.3.5. Assume that X is a Banach space and Xq is a dense
subspace of X. Then every Ty € B(Xy) extends in a unique way to an
operator T' € B(X), which satisfies that ||T|| = ||To||-

Example 3.3.6. Let a,b € R, a < b, and equip the space C([a, b]) of all con-
tinuous complex functions on [a, ] with the norm || f|s = (/7| f(s)[>ds)"/2.
Considering the square [a, b] X [a,b] as a metric space w.r.t. the Euclidean
metric inherited from R?, let K : [a,b] X [a,b] — C be a continuous function.
One can then associate to K an integral operator Tk on C([a,b]) as follows.

Let f € C([a,b]). Since the function t — K (s,t) f(t) is continuous on
[a, b] for each s € [a,b], we may define a function Tk (f) : [a,b] — C by

b
Ti(N)(s) = [ K(s.8) f(t)dt foralls € [a,].
We leave it as an exercise to verify, using basic knowledge from elementary
analysis, that Tk (f) is continuous on [a, b] and satisfies

1Tl < ([ [ 15 G0 dsdr) 171

As the map f — Tk(f) is then clearly linear, it follows that T is a bounded
linear operator from C(|a, b]) into itself.

Let now L?([a, b]) denote the L%-space associated with the measure space
(la,b], A, ), where pu is the Lebesgue measure on the o-algebra A of all
Lebesgue measurable subsets of [a, b].

As we may identify C([a,b]) with a dense closed subspace of L?([a,b])
(cf. Exercise, we get from Corollarythat Tk has a unique extension
to a bounded operator on L?([a,b]), also denoted by Tx. The function K is
usually called the kernel of the integral operator Tx. We will come back to
such integral operators later.

We note that more generally, one can define integral operators associated
with kernels K which are L?-functions on [a,b] X [a,b] (with respect to
the Lebesgue product measure), but this requires a thorough knowledge of
integration theory on product spaces.
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3.4 Exercises

Exercise 3.1. Let H be a Hilbert space which is infinite-dimensional (as a
vector space). Argue first that there exists an orthonormal sequence {z, }nen
in H. Then use this sequence to show that the unit ball H; is not compact.

Exercise 3.2. Let X be a normed space. Let M denote a finite-dimensional
subspace of X, and assume M # X.

a) Let € X \ M. Show that d := inf,,ep ||z —m]| > 0.
b) Show that there exists y € X such that ||y|| = 1 and

1
B} < |ly —m] forall m e M.

c¢) Assume that X is infinite-dimensional (as a vector space). Show that
the unit ball X is not compact.

(Hint : Use b) to construct inductively a sequence {y, }nen in X; such
that 1/2 < ||y, —yil| for all 1 <k < n.)

Exercise 3.3. Let X be the subspace of ¢>°(N) given by
X ={f:N—=C: f(n)=0 for all but finitely many n}.

a) Show that X is infinite-dimensional.

b) Consider X as a normed space w.r.t. || f|l, = sup,ey |f(n)| and let
L : X — C be defined by

for all f € X. Clearly, L € £(X,C). Show that L is unbounded. Check
also that ker(L) is not closed in X.

Exercise 3.4. Let Pgr denote the real vector space consisting of all polyno-
mials in one real variable with real coefficients. For p € Pk, set

Ipll :== sup |p(t)].
te(0,1]

a) Explain why p — ||p|| gives a well-defined norm on Pg.
b) Define a linear operator D : Pr — Pg by

D(p) =p' (the derivative of p).

Show that D is unbounded. Conclude that Pp is infinite-dimensional.
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Exercise 3.5. Let Vj, V5 be vector spaces over F. We recall that their
(external) algebraic direct sum (also called their algebraic direct product) is
the vector space

Vi x Vo= {(v1,v2) : v1 € V1, v € Va},
with operations given by
(vi,02) + (v1,05) = (vi + 0], v2 +15),
A (v1,09) := (Avq, Avg)
for vy, v} € Vi, v9,05 € Vo and A € F.

~a) Set V) = {(v1,0) : v; € V1 } and Vo = {(0,v9) : v9 € Vo}. Check that
V; is a subspace of V; x V5 which is isomorphic to V; for + = 1,2, and that

VixVa=Vi4+V;.

b) Assume X is a vector space, M; and M, are subspaces of X and
X = M, + M,. Show that X is isomorphic to M; x M.

Exercise 3.6. Let V), 15 be normed spaces over I and set V' := V] x V5.
For p € [1,00) and (vy,v,) € V, set

1/p
(o1, v2)lp == (lor [P + ffoal?) ™
Set also (v, 0)[|oo == max{|Jor |, [[val}-

a) Check that || - ||, gives a norm, called the p-norm on V', for each
p € [1,00]. Then show that all these p-norms on V' are equivalent.

b) Set V, = {(v1,0) : v, € Vi} and Vo = {(0,v3) : vy € Vi}, so
V=V+V, (cf. Exercise. Let P, € L(V') denote the projection from V'
on V; along V,, and consider the normed space (V, || -||,,) for some p € [1, 00].
Show that P; is bounded.

Exercise 3.7. Let X be the subspace of ¢!(N) given by
X ={f:N—=C: f(n) =0 for all but finitely many n}

and consider X as a normed space w.r.t. the 1-norm || f]| := X ,en |f(n)].
Let M; be the subspace of X given by

My={feX:f(2n)=nf(2n—1) for all n € N},
and let M5 be the subspace of X given by
My={feX:f(2n—1)=0 for all n € N}.

Show that X = M; & M, and that the projection from X on M; along M,
is unbounded.
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Exercise 3.8. Prove Proposition [3.2.15

Exercise 3.9. Set X = C? and let {e;,es} denote the standard basis
of X. Let T" € L(X) be the linear operator satisfying T'(e;) = e; and
T(e3) = iey + es. Clearly, 1 is an eigenvalue of T'. Set M, = ET | so M, is a
subspace of X which is invariant under 7'.

Show that there is no subspace M, of X which is invariant under 7" and
satisfies that X = M; + M.

Exercise 3.10. Let X be a vector space over F.

a) Assume X = M, + M, for some subspaces M; and M, of X, and let
Py, Py denote the associated projection maps. Define S € L(X) by

S(x):=P(x) — Py(x) =2P(x) —x.
Check that S? = I. Moreover, check that
M, =ker(I - 95)={xe X :S5(x) =z},

My =%ker(I+95)={re X :S(x)=—z}.
The map S is called the symmetry through M; along Ms.

b) Assume S € L£(X) satisfies S? = I. Show that (I+5)(X) = ker(I —5)
and (I —S)(X) = ker({ + 5). Moreover, show that

X =ker(I — S)+ ker(I + 5)

and that S is the symmetry through ker(I — 5) along ker(/ + 5). Finally,
check that S is decomposable with respect to this direct sum decomposition.

¢) Assume now that X is a normed space and that S € B(X) satisfies
S% = I. Deduce that X = ker(I — S) @ ker( + 5).

d) Let a > 0 and consider the space X = C([—a, a]) with the uniform
norm. Define §': X — X by

[S(H)](t) = f(—t) forallfe X and t € [—a,al.
Check that S is bounded and S? = I. Deduce that X = Xeyen ® Xoqq , where
Xeven := {9 € X : g(—t) = g(t) for all t € [—a,a]} and
Xodd :={h € X : h(—t) = —h(t) for all ¢t € [—a,a]}.
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Exercise 3.11. Let X = R3 and consider X as an inner product space
w.r.t. the Euclidean inner product. Let R € £(X), R # Ix. Assume that the
standard matrix U of R is orthogonal (i.e., U'U = I) and has determinant
equal to 1.

a) Show that 1 is an eigenvalue of R, and that the associated eigenspace
M := El is 1-dimensional.

b) Let N = M+ denote the orthogonal complement of M. As should be
well-known, we have X = M + N.

Show that R is decomposable w.r.t. X = M+ N, so we may write
R = Iy+R with R € L(N).

¢) Let B’ be an orthonormal basis for N. Show that the matrix of R’
w.r.t. B is a 2 x 2 rotation matrix.

d) Describe how R acts in geometrical terms.

Exercise 3.12. Let X be a vector space over F and let M be a subspace
of X. Define a relation ~); on X by x ~,; y if and only if y — 2z € M.

a) Check that ~); is an equivalence relation on X.

The equivalence class of x € X w.r.t. ~y; is the set {z +m :m € M},
which we will denote x + M. The set consisting of all these equivalence
classes is called the quotient space (of X by M), and is denoted by X /M.

b) Check that X/M becomes a vector space over [ with respect to the
operations given by
x4+ M)+ (@' +M)=(x+2)+M, Az+M):=A)+M
for all x,2’ € X and A € F. You should first argue that these operations
are well-defined.

The map @ : X — X/M given by Q(z) = x + M is called the quotient
map. It is evident that () is linear.

¢) Assume now that X = M + N for some subspaces M and N of X.
Show that X /M is isomorphic to N. (Similarly, X/N is isomorphic to M).

Hint : Consider the map 7 : N — X/M given by 7 := Qv : N — X/M,
ie.,
w(y) =y+ M forallye N, (3.4.1)

and show that 7 is an isomorphism.
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Exercise 3.13. Assume that X is a normed space and M is a closed
subspace of X. For each element x + M in the quotient space X /M (defined
in the previous exercise), set

|z + M|| := inf ||+ m] (= inf ||z —m]|]).
meM meM

a) Show that the map z + M — ||z + M|| gives a norm on X/M, called
the quotient norm. Then check that the quotient map @ : X — X/M
is contractive, i.e., [|Q(x)| < ||z| for all z € X. In particular, we have
Q€ B(X,X/M).

b) Let now N be a subspace of X such that X = M + N.

Let 7 : N = X/M be defined by (3.4.1), and let P’ : X — X denote
the projection from X on N along M. Consider X/M as a normed space
w.r.t. the quotient norm, and M x N as a normed space w.r.t. any choice of
p-norm, cf. Exercise [3.6] Show that the following assertions are equivalent:

(i) Nisclosedin X (so X = M@®N)and 7 : N — X/M is an isomorphism
of normed spaces;

(ii) The map (m,n) — m +n from M x N to X is an isomorphism of
normed spaces;

(iii) P’ is bounded.

Exercise 3.14. Consider X = R%. Find three subspaces M, My, M3 of X
such that

o X =M+ My + Ms;
o MyNMyn Ms={(0,0)};
o X is not the algebraic direct sum of My, My and Ms.

This illustrates why the definition of an algebraic direct sum of more than
two subspaces must be formulated in a different way than the one you
possibly had guessed.

Exercise 3.15. Let X be a Banach space having a dense subspace Xy which
is not complete. Consider the identity map Iy : Xg — Xy. Show that I,
does not have an extension to a bounded linear map I : X — X,.

Exercise 3.16. Assume that X is a normed space and Y is a Banach space
(both over F), and let {7} }ren be a sequence in B(X,Y") which is uniformly
bounded in the sense that M := supyy [|Tk]| < oo .
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Moreover, assume that there exists a dense subset S of X such that
{T)(x) }ren converges in Y for every z € S.

Show that there exists T' € B(X,Y’) such that
T(x) = lilgn Ti(x) forallz e X.

Exercise 3.17. Assume X; is a normed space and let (X,i) denote a
completion of Xq, that is, X is a Banach space and 7 : Xy — X is a linear
isometry such that i(Xj) is dense in X. (As mentioned in Remark [1.1.7]
such a completion always exists.)

Show that (X, i) is unique up to isometric isomorphism, meaning that
the following holds: if (X', 4) is another completion of Xy, then there exists
an isometric isomorphism U : X — X’ such that / = U o .

Exercise 3.18. a) Provide the details missing in Example [3.3.6]

We outline below how one may define more directly integral operators on
L*([a,b]). Let u denote the Lebesgue measure on the Lebesgue measurable
subsets of [a,b] and let K be a continuous complex function on [a, b] X [a, b].
For each s € [a,b], let k; : [a,b] — C denote the continuous function defined
by ks(t) := K(s,t) for all t € [a, b].

b) Let f € £L*([a,b]) and s € [a,b]. Show the function k, f is Lebesgue
integrable on [a, b] and satisfies

e sl < Bl 17
c) Let f € £%([a,b]) and define g : [a,b] — K by
g(s) :/[ ] ks f du :/[ ] K(s,t) f(t) du(t) for each s € [a,].
a,b a,b
Show that g is continuous and check that
b rb 9 1/2
lgllz < MIIflls, where M= ([* [" K (s, D) dsdt )"
Deduce that we obtain a linear map T : £%([a, b]) — L*([a, b]) by setting
(Tf((f))(s) :—/[ ] ks fdu for each f € L£*([a,b]) and all s € [a, b],
a,b

which satisfies that || T (f)|l2 < M || f]|2 for all f € £*([a,b]).
d) Check that the operator Tk : L?([a,b]) — L*([a,b]) defined by

Tr([f]) = [Tx(f)] for all [f] € L*([a,b])
is well-defined, linear and bounded, with || Tx| < M.
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CHAPTER 4

More on Hilbert spaces

By a Hilbert space we always mean a Hilbert space over [F, unless otherwise
specified.

4.1 Geometry in Hilbert spaces

In courses in elementary linear algebra, one learns that if M is finite-
dimensional subspace of an inner product space H, then every vector in
H can be written in a unique way as the sum of a vector in M and a
vector in the orthogonal complement M*. Since M and M~ are both closed
subspaces of H, this means that = M @ M+*. The projection of H on M
along M* is then called the orthogonal projection of H on M. As we are
going to establish, such a decomposition of H also holds when H is a Hilbert
space and M is closed subspace of H, not necessarily finite-dimensional.

We recall first that if (X, d) is a metric space, z € X and A is a nonempty
subset of X, then the distance from x to A is defined by

d(z,A) = inf{d(z,y) 1y € A}.

If for example A is compact, then the function y — d(x,y), being continuous,
will attain its minimum on A; hence, in this case, there exists some (not
necessarily unique) z4 € A such that d(z, A) = d(z,z4). However, if A is
only closed, then such an 24 may not exist (cf. Exercise .

If we now consider a Hilbert space H with the metric dy associated to its
norm, a vector z € H and a closed subspace M of H, then M is not compact
and the result above does not apply. However, if M is finite-dimensional,
then we know from previous courses that there exists a unique x); € M
which gives the best approximation to x in M, i.e., which satisfies that

|z —xpm| < ||z —y| forallye M,
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that is, we have dy(z,x)) = dy(x, M). Moreover, we also know that z,,
is given as the orthogonal projection of z on M. When M is not finite-
dimensional, but still closed, we will reverse this prosess by showing first
that there exists a unique best approximation x,; to x in M, and then use
this to define the orthogonal projection of x on M.

We will actually prove a more general result, valid for any closed convex
subset of H. We recall that a subset C' of some vector space V' (over F) is
called convez if C' contains the line segment between any two elements of C,
i.e., if we have (1 —t)z + ty € C whenever z,y € C and t € [0, 1].

Clearly, any subspace of a vector space is convex, as is any ball in
a normed space. Using that the norm in a Hilbert space satisfies the
parallellogram law, we will prove the following result, which the reader is
advised to illustrate geometrically by looking at various examples in R2.

Theorem 4.1.1. Let C' be a nonempty closed convex subset of a Hilbert
space H and let x € H. Then there is a unique vector xc € C' such that
dy(x,xc) = dy(z,C), that is, such that

|z —zcl| < llz—y| forallyeC.
The vector x¢ is called the best approximation to x in C'.

Proof. We first consider the case where x = 0. We then have to show that
there is a unique vector O¢ € C of minimal norm, i.e, which satisfies that

l0c]| = inf {|lyll : y € C}.

Set s := inf {||y||2 Ly € C’}. For each n € N we can find y,, € C such that

1
< lynll* < s+ =—. 4.1.1
s < ull® < s+ 5 (4.1.1)

Then the sequence {y, }nen is Cauchy in H. Indeed, consider m,n € N.
Then, using the parallellogram law and (4.1.1)), we get that

1 1
I+ 9l + 1 = gl = 2 >+ 2 g < A5+ +

Now, since C' is convex, we have ¢ := %yn + %ym € C'. Hence,
lyn + ymH2 =4 ||C||2 > 4s,

so we get

11 1 1
I = Yml? < 485+ =+ — —|lygn +yml* < — 4+ —.
n m n m
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4.1. Geometry in Hilbert spaces

Thus, given € > 0, we can choose N € N such that N > (2¢?)~!, and obtain
that ||y, — ym|| < € for all n,m > N, as desired.

As H is complete, there exists yo € H such that lim, vy, = yo. Since C'
is closed, yp € C. Letting n — oo in (4.1.1)), we get that

lyoll = /s = inf{[ly[| : y € C}.

If yi, € C also satisfies that [|y;|| = inf{||y|| : y € C'}, then we can consider
the sequence {z, }nen in C given by z, =y if n is odd and z, =y, if n is
even. Since z, satisfies (with y,, = z,) for each n, we can conclude as
above that {z, }nen is convergent. This clearly implies that y, = yo. Thus,
Yo is the unique vector in C satisfying ||yo|| = inf{||y|| : vy € C'}, and we can
set O¢ := ¥o.

In the general case where x € H, we note that the set
D:={x—y:yeC}

is closed and convex. Using the first part, we get that there exists a unique
vector Op € D such that ||Op| = inf{||z|| : = € D} = d(z,C). Then
ro :=x — 0p € C has the desired properties. [ |

One important application is when C' is a closed subspace M of H.

Theorem 4.1.2. Let M be a closed subspace of a Hilbert space H. Then
we have
H=M®&M*".

The associated projection Py of H on M along M= is given by
Py(x)=xpy forallze H,

where xpr € M is the best approximation to x in M (cf. Theorem. We
call Py the orthogonal projection of H on M and write sometimes Proj,,
instead of Pyr. The linear map Pyy is bounded, with ||Py|| = 1 if M # {0}.
Moreover, we have

(M) =M and Py =1Ig— Py.

Proof. Let x € H and set 2+ := x — z;. We claim that 2 belongs to M*.
To show this, let y € M and £ > 0. Since (xp; +ey) € M, we get from
Theorem [L1.1] that

lo=11* = llz — 2umll* < llo = (2 + )

= [la* = 2¢ Re((z™, ) + & |yl

I = llz* —eyll®
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which gives that
2 Re((z7,y)) < eyl

As this holds for every ¢ > 0, we obtain that Re((x*,y)) < 0. Applying this
to —y € M, we also get that — Re({z*,y)) <0, i.e., Re({z*,y)) > 0. Thus,
it follows that Re({(xzt,y)) = 0. If F = R, this means that (z* y) = 0. If
F = C, we also have that iy € M, and this gives that

Im((z*,y)) = Re(—i (z",y)) = Re((z,iy)) = 0.

Thus, (z+,y) = 0 in this case too. As this holds for every y € M, the claim
is proven.

Since x = x; + 2+, by definition of 2+, we get that
H=M + M*.

Now, we also have that M N M+ = {0} (because if y € M N M=, then
{y,y) = 0, so y = 0), while M and M* are both closed in H. Thus,
H = M @ M*, as we wanted to show.

The projection map Py : H — H on M along M+~ is then clearly given
by Py (x) = xp for x € H. Using Pythagoras’ identity, we get that

1Py (@)I* = lleadll* < loarll” + lla1* = [lwar + 27| = [l

for all x € H, showing that ||Py|| < 1. Since Py (y) = y whenever y € M,
we have that [Py (y)|| =1 if y € M and |ly|| = 1. It follows that ||Py|| =1
it M # {0}, as asserted.

Consider now y € M. Then for all z € M+, we have (y,z) = 0. This
implies that y € (M*)+. Hence we have M C (M*)+,

To show the reverse inclusion, that is (M+)+ C M, we first observe that
by applying the first part of the theorem to M=, we get that

H=M"® (MH)*.

Now let # € (M*)1, and set again z := x — x);. Since 2+ € M* and
xy € M C (M*)4, we can write

v =x"4+xy, where vt € Mt and zp € (M), and
r= 0+ x, where 0€ M+ and =z € (M*)

By the uniqueness of decomposition in a direct sum, we get that z = ),
so # € M. Thus, we have shown that (M+)t C M, and we can conclude
that (M)t = M.
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Finally, for z € H, we have
r=(r—xzy)+aMm,
where (z — xy) € M+ and xp € M = (M*)1. This gives that
Pyi(z)=x—xpy = Iy — Py)(x).

Hence, Py = Iy — Pyy.
|

Remark 4.1.3. Assume that M is finite-dimensional subspace of a Hilbert
space H and that B = {uy,...,u,} is an orthonormal basis for M. Then
we know that the orthogonal projection Py, of H on M is given by

Py(z) => (x,uj)u; forallze H.
j=1
A similar formula holds when M is only assumed to be a closed subspace
of H, as we will see in the next section after having discussed orthonormal
bases in Hilbert spaces.

Corollary 4.1.4. Let M be closed subspace of a Hilbert space H. Then
M = H if and only if M+ = {0}.

In connection with the next corollary, we recall that if S is a nonempty
subset of a vector space V', then Span (5) denote the subspace of V' consisting
of all possible finite linear combinations of vectors in .S.

Corollary 4.1.5. Let S denote a nonempty subset of a Hilbert space H.
Then Span (S) is dense in H if and only if S+ = {0}.

Proof. Set M := Span (5), which is a closed subspace of H. Then Span (5)
is dense in H if and only if M = H. As one easily verifies that S+ = M+
(cf. Exercise [1.3), the result follows from Corollary [4.1.4] n

A nonempty subset S of a normed space X is sometimes called total in
X when Span (S) is dense in X. So the corollary above says that S is total
in H if and only if S+ = {0}.

Example 4.1.6. Let (X, A, i) be a measure space and set L? := L?(X, A, 11).
We can organize L? as a Hilbert space (over C) as follows.

Let f,g € £2. Then g is measurable (since § = Re(g) — i Im(g)) and
Jx [91* du = [x [gl* du = [|g]l3 < 00, so g € L*. Hence, f7 € L, and we

can set
(Uf1:lal) == [ 1 .
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4. More on Hilbert spaces

We leave it as an exercise to check that this gives a well-defined inner product
on L?. As the associated norm obviously coincides with || - |2, L? is complete
w.r.t. this norm and we can conclude that L? is a Hilbert space.

Now, let F € A and set F':= E° € A. If g : X — C is measurable, let
us say that g lives essentially on E when ,u({x € F:g(x)# 0}) = 0. Then

let Mg be the subset of L? given by
Mg = { [g] : g € £* and g lives essentially on E} )
Similarly, we can define Mp. We claim that
Mp = (Mg)*t and Mg = (Mgp)*. (4.1.2)

To prove this, assume first that [g] € Mg and [h] € Mp. Then one easily
sees that g = g1p p-a.e. and h = h1p p-a.e., so, as ENF = &, we get

(gl 1)) = [ 1R T dp= [ gh1pr du=0.

Since this is true for all [g] € Mg, this implies that [h] € (Mg)t. As this
holds for all [h] € Mp, we get that Mp C (Mg)=*.

To show the reverse inclusion, let [h] € (Mg)*. Then we have
/ gh du =0 whenever [g] € Mg.
X
In particular, since [h1g] € Mg, we get

/ h2 15 dﬂz/ (h1p)h du=0.
X X
Since |h|? 1 is nonnegative on X, this implies that

p({z € X ¢ (@) 1p(x) £ 0}) =0.

As {z € E : h(z) # 0} = {z € X : |h(z)]*1e(x) # 0}, we get that
u({x € FE: h(z) # O}) = 0, hence that h lives essentially on F. Thus,
[h] € Mp. This shows that (Mg)* C Mp.

Altogether, we have proved that My = (Mg)*. Interchanging £ and F,
we get that Mp = (Mp)*, and the proof of (4.1.2)) is finished.

Since the orthogonal complement of any subset is a closed subspace, we
can conclude that My and M are closed subspaces of L?. Theorem m
now gives that

L?* = My @ (Mg)" = Mg & Mp.
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We note that the fact that L? = Mg + Mp is a simple consequence of the
equation

f] =[f1e] + [f1r], where [f 15| € Mg, [f 1F] € Mp,

which holds for all [f] € L?. From this equation, we now see that the
orthogonal projection of L? on Mg (resp. My) is given by

Prg(If]) = [f 1e]  (vesp. Parp([f]) = [f 1F]).

4.2 Orthonormal bases in Hilbert spaces

The notion of an orthonormal basis for a finite-dimensional inner product
space, which is well-known from elementary linear algebra, have a natural
generalization to Hilbert spaces.

Definition 4.2.1. A nonempty subset B of a Hilbert space H is called an
orthonormal basis for H when B is orthonormal and Span (B) is dense in H.

Suppose a Hilbert space H is finite-dimensional (and nonzero). Then an
orthonormal set B in H has to be finite, so Span (B), being finite-dimensional,
is closed in H; hence, Span (B) is dense in H if and only if Span (B) = H.
Thus we see that Definition [4.2.1] agrees with the usual one when H is
finite-dimensional. We also mention that some authors like to define the
empty set to be an orthonormal basis for the trivial Hilbert space H = {0}.

Our first example is of great importance in Fourier analysis.

Example 4.2.2. Let H = L*(|—7, 7], A, i), where A denotes the o-algebra
of all Lebesgue measurable subsets of [—m, 7], and p is the normalized
Lebesgue measure on A, that is,

pu(A) = 1 AMA) forall Ae A,

27

where A denotes the Lebesgue measure on R. In particular, we have
u([=m,m]) = 1. For each n € Z, let e, : [—m,7] — C denote the con-
tinuous function given by

en(t) :i=e™ forall t € [—m, 7).
As is probably well-known (and easy to check), the set
B :={le,) :n €Z}
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is an orthonormal subset of H. Moreover, Span (B) is dense in H.

To show this, let 7 denote the space of all (complex) trigonometrical
polynomials, i.e., 7 := Span ({e,, : n € Z}). Clearly, we have

Span (B) = {[h] : h € T}.

Further, let Cper([—m,7]) = {k € C([—m,7]) : k(—7) = k(7)}. We will
use the fact (shown for example in Lindstrom’s book) that 7 is dense in
Cper([—m, 7]) w.r.t. the uniform norm || - ||,.

Let [f] € H and £ > 0. Using Exercise 2.7 we can find g € C([—n, 7]) such
that

1A =gz < /3. (4.2.1)
Moreover, it is easy to see that we can pick k € Cper([—m, 7]) such that
gl = [Klll2 = lg — Kl < /3. (4.2.2)

Now, as mentioned above, we can find h € T such that ||k — k|, < &/3.
Since

1 = )5 = [ 1k =l an

< k=l [

= Ik = hll; p([=m,7])
= [k = Alls,.
we get
K] = a2 < [[k = hll. < /3. (4.2.3)

Using the triangle inequality, , and , we obtain that
01 = Al 2 = W 1f] = [g] + [g] = [K] + [K] =[] 2
< T =Tglllz + [g] = [k ll2 + 1TK] = [R] ]2
<e/3+¢/3+¢/3 =¢.

This shows that [f] € Span (B). Hence, Span (B) = H, as asserted.
We can now conclude that B = {[e,] : n € Z} is an orthonormal basis
for H.

More generally, one may consider the L2-space associated to an interval
[a, b] and the normalized Lebesgue measure j := ﬁ A. Then, letting €/, be
defined for each n € Z by

el (t) = ™2/t~ forall t € [a,b],

n

one may argue in a similar way as above, and conclude that B’ = {e], : n € Z}
is an orthonormal basis for this L2-space.
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4.2. Orthonormal bases in Hilbert spaces

An immediate consequence of Corollary is the following useful
characterization of orthonormal bases:

Proposition 4.2.3. Assume that B is an orthonormal subset of a Hilbert
space H. Then B is an orthonormal basis for H if and only if B+ = {0}.

Example 4.2.4. Let X be a nonempty set. Then ¢*(X) has a natural
orthonormal basis € which is the analogue of the standard basis {ey,...,e,}
for F* (which may be identified with (2({1,...,n})).

Indeed, for each z € X, let e, € £*(X) be defined by e, = 1y, and set

E:={e,:x e X}.

Then £ is clearly orthonormal. Moreover, let f € (2(X), f € £+. Thus, for
each z € X, we have (f,e;) = 0. As

(free) =D fy) = > /)

yeX ye{z}

we get that f(x) =0 for all z € X, i.e., f = 0. This shows that £+ = {0},
and Proposition m gives that £ is an orthonormal basis for £2(X).

It will be shown in more advanced courses that every Hilbert space
(which is non-zero) has an orthonormal basis. The proof is nonconstructive
as it relies on Zorn’s lemma, i.e., on the axiom of choice. We will take this
fact as granted. Of course, in applications, it is better to have at hand a
concrete orthonormal basis whenever possible.

Example 4.2.5. The Gram-Schmidt orthonormalization prosess, of great
importance in the finite-dimensional case, can be generalized to cover the
following situation:

Let H be a Hilbert space, H # {0}. Let {x;};en be a sequence of vectors in
H\ {0} and set S := {z; : j € N}. Assume that Span (S) is dense in H.

We remark that such a sequence exists whenever H is finite-dimensional
(since repetitions are allowed in a sequence). More generally, it exists

whenever H is separable, i.e., whenever H contains a countable dense subset,
cf. Exercise .9

For each n € N; set M,, := Span ({z1,...,x,}). We note that for each n
we have M, C M, ;. Moreover, Span (S) = U,en M.

Proceeding inductively, we can construct an orthonormal basis B, for each
M, as follows:
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i) We set By := {m xl}. Clearly, B; is an orthonormal basis for M;.
ii) Let n € N and assume that we have constructed an orthonormal basis
B,, for M,,.
If x,,.1 € M, then set B, 1 := B,. Otherwise, set
1

Y+l

It follows readily that B, is an orthonormal basis for M, .

Ynt1 := Tpy1 — Projyy (2p41) and By =B, U { yn+1}-

Set now B := U,ey Bn. Then B is orthonormal, and Span (B) = Span (5),
S0

Span (B) = Span (S) = H .
Hence, B is an orthonormal basis for H.

We observe that since each B,, is finite, B is countable. Conversely, if H
has a countable orthonormal basis, then it can be shown that H is separable

(cf. Exercise [L.9)).

When H is a nontrivial finite-dimensional inner product space, and
B ={ui,...,u,} is an orthonormal basis for H, we know that every x € H
has a Fourier expansion w.r.t. B, i.e., we have

n
T = Z(:E,uj) (T
i=1

As we will soon see, a similar expansion also holds in any infinite dimensional
Hilbert space.

We will use the following notation. If j — ¢; is a function from a
nonempty set J into [0, 00), then we set

Z t; = sup{ Z t;: ' C J, F is finite and nonempty} € [0, 00].
j€J jEF
Equivalently, >>;c ;¢; is the integral of the nonnegative function j — t;

w.r.t. the counting measure on P(J) (= the o-algebra of all subsets of .J).

We first note that Bessel’s inequality holds for any orthonormal set:

Lemma 4.2.6. Assume that B is an orthonormal set in an inner product
space H, and let x € H. Then

> || <,

ueB

and the set B, := {u €B:(r,u) # 0} is countable.
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4.2. Orthonormal bases in Hilbert spaces

Proof. Let F be a nonempty finite subset of B. As F'is orthonormal, Bessel’s
inequality for F' gives that

> @] < ).

Thus we get that ver

2
sup{ > ’(x,u>‘ : ' C B, F is finite and nonempty} < |lz|?,
ucF
which proves the first assertion.
Further, this implies that the set B,,, := {u € B : [{(z,u)[* > 1/n} is

finite for every n € N. Hence, B, = U,en Ba,n is countable.
[

The next lemma will be useful at several occasions.

Lemma 4.2.7. Assume {u; : j € N} is a countably infinite orthonormal
set of distinct vectors in a Hilbert space H and let {c;}jen be any sequence
in IF satisfying that

oo
> e < .
j=1
Then the series 372, ¢ju; converges to some y € H, and we have that

(y,up) = cy, for every k € N.

Proof. This result is essentially shown in Lindstrgm’s book, but we sketch
the argument for the ease of the reader. For each n € N, set y,, = X2, ¢ u;.
Then, for any m > n, Pythagoras’ identity gives that

7=1

m m

ym =yl = D2 Nejui P = > lesl*.

Jj=n+1 j=n+1

Using the assumption, the sum above can be made as small as we want by
choosing m and n large enough. Thus the sequence {y, }nen is Cauchy in
H |, so it converges to some y € H, i.e., we have

o
Z/ZZCJUJ'-
j=1

For each k € N, continuity and linearity of the inner product in the first
variable gives then that

o0
y,uk E: Cj 1@,uk = Ck -
J=1
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Theorem 4.2.8. Let H be a Hilbert space, H # {0}, and let B be an
orthonormal subset of H. Then the following conditions are equivalent:

(a) B is an orthonormal basis for H.

(b) Every x € H\ {0} has a Fourier expansion

r= Y (z,u)u (4.2.4)

where B, = {u € B : (xz,u) # 0} is countable (cf. Lemma |4.2.6) and
nonempty.
By (4.2.4) we mean that if B, is not finite, and B, = {u; : j € N} is

any enumeration of the distinct elements of B,, then we have

[e.o]

lim Ha:—zn:l(x,uﬂuj H =0, i€, =) (zuj)u;.

2
(¢) For every x € H we have ||z||* = X, e ’(x,u)’ .
The formula in (¢) is called Parseval’s identity.

Proof. (a) = (b): Assume that B is an orthonormal basis for H and let
x € H\ {0}.

We first observe that B, # @. Indeed, suppose that B, = @. This means
that x € B+. But B+ = {0} by Proposition so x = 0, a contradiction.

We now consider the case where B, is countably infinite. (The case
where B, is finite is much easier and left to the reader). Let {u; : j € N}
be an enumeration of the distinct elements of B,. Since B, is orthonormal,
Bessel’s inequality gives that

> [ u) P <l

=1

Applying Lemma with ¢; = (z,u;) for every j € N, we get that the
series 322, (¥, u;) u; converges to some y € H, which satisfies that

(y,up) = cx = (x,ug) for every k € N.

Moreover, if u € B\ B, , we get that

o0

<yau> = Z <x7uj> <uj?u> =0= (x,u>

=1
It follows that  — y € B+ = {0}, hence that x = y. This shows that the
assertion in (b) holds in this case.
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(b) = (c): Assume (b) holds, and let x € H \ {0}. Again we consider
the more difficult case where B, is countably infinite, so B, = {u; : j € N}
as above. By continuity of the norm and Pythagoras’ identity, we get

o
ol = 3 |(eu)
j=1

2
Hence, given & > 0, we can find n € N such that [|z]|* — X7, ‘(x,uﬁ‘ <e,
giving

‘2

ol — ¢ < z @) < X fww)f

2
Since this holds for every e > 0, we get that ||z|* < Y, c5 ’(x, u>’ . Com-
bining this inequality with Lemma we see that (¢) holds.

2
(¢) = (a): Assume |z|* = S, cn ‘(x,u)‘ for every z € H. If x € B,
i.e., (z,u) = 0 for every u € B, then we get ||z||* = 0, so z = 0. Hence,
B+ = {0}, and Proposition [£.2.3 gives that (a) holds.

[

Remark 4.2.9. The Fourier expansion of  in Theorem [1.2.8] (b) can be
written in the form

r=> (r,u)u (4.2.5)

ueB

if one takes care of giving a meaning to convergence of generalized sums in
normed spaces. We discuss this in Exercise .12} In these notes, we will
sometimes use as a short form of the Fourier expansion of x given by
(4.2.4).

Example 4.2.10. Let M be a closed subspace of a Hilbert space H and
assume that we have found an orthonormal basis C for M. Then we can use
it to compute the orthogonal projection P, of H on M:

Let v € H. If z € M~ then Py(z) =0, so we can assume x € H \ M=,
Since C is orthonormal in H, we know that C, := {v € C : (x,v) # 0} is
countable. Set zy; := Py(x) € M and z+ := 2 — 1), € M+, and note that
xy # 0. Now, for each v € C, we have

(z,v) = (Tar,v) + (x,0) = (T4, 0) .

Hence, C, = C,,,. Moreover, applying Theorem to M, xp € M\ {0}
and C, we get that

o= Y, {(Tm,v)v.

’UECI]\/[
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Using our previous observations, this formula can be rewritten as

Py (z) = Z (x,v)v,

veE Cl‘
generalizing the usual formula for Py (x) when M is finite-dimensional.
A straightforward consequence of Theorem [£.2.§is the following:

Corollary 4.2.11. Assume a Hilbert space H contains a countably infinite
orthonormal subset B, enumerated as B = {v, : k € N}. Then B is an
orthonormal basis for H if and only if

(oo}
T = Z (x,vg) Vg
k=1

for all x € H, if and only if
‘2

[oe)
el = 3 [, 0n)
k=1

forallx € H.

Example 4.2.12. Let B = {[e,] : n € Z} denote the orthonormal basis
for H = L*([—m, ], A, \/27) described in Example [4.2.2] For [f] € H and
n € 7 it is common to set

T 1 —in
1) = (U leal) = o= [ F@e™dA),
T J]|—m,7]
which is called the Fourier coefficient of [f] at n.
In fact, it is usual to write f instead of [f], having in mind that one
identifies functions which agree p-a.e. Hence, the Fourier coefficient of f

o~

at n is denoted by f(n), and the Fourier expansion of f w.r.t. B is then

written as R
f = Z f(n) €n ,
nez
meaning that
f=lim > fn)e, (wrt. |- [).

This follows from Corollary [£.2.11] by enumerating B as eg, e_1, €1, €_2, €a,
etc. Similarly, we have

~ 2

113 =X [Fm)|

newz
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4.3. Adjoint operators

4.3 Adjoint operators

Let X be a normed space (over F). We recall that the dual space X* consists
of the bounded linear functionals on X (with values in F), and that X* is
a Banach space w.r.t. the norm ||¢|| = sup{|p(z)|: x € X;}. The goal of
functional analysis is to gain new insight by exploiting the interplay between
a space and its dual. This is particularly successful when X is a Hilbert
space because the dual space may then be identified in a natural way with
the space itself.

Theorem 4.3.1. Let H be a Hilbert space (over F). For each y € H, define
oy H—TF by

py(x) = (z,y) forall zeH.
Then ¢, € H* for ally € H.

Moreover, the map y — @, s a bijection from H onto H*, which is
isometric, and conjugate-linear in the sense that

Priy1+doys — )‘71901/1 + E(pyz
for all \y, \o € F and all y,,y2 € H.

Proof. Let y € H. Then the map ¢, is clearly linear. Moreover, for all
xr € H, we have

loy(2)] = [{z, 9)| < [l [lyll -
Hence, ¢, is bounded, with ||¢,|| < |ly||. If y # 0, then

1 1
M(Hy” y)| = i (v, y) = llyll,

so [lgyll = [lyll- Thus, [ley ]| = [yl

This shows that the map y — ¢, is an isometry from H into H*. In
particular, it is injective. To show that it is surjective, let p € H*. If ¢ = 0,
then we have ¢ = ¢y. So assume ¢ # 0 and set M := ker ¢. Then M is a
closed subspace of H such that M # H. By Corollary , M+ # {0}, so
we can pick z € M+ such that ||z|| = 1, and set

y:=¢(2)z€ H.
We claim that ¢ = ¢,. Indeed, let x € H and set m := ¢(z) 2z —p(2) x €
H. Then we have
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4. More on Hilbert spaces

som € M. As z € M+, we get (m,2) =0, i.e.,

<S0($) 2 Z> = <90(z)x, z>

Hence
p(z) = (@) |2]* = (p(z) 2, 2) = (p(2) 2, 2) = p(2) (z, 2)

= (1,0(2) 2) = (2,9) = ¢y (),
which shows the claim above, hence that the map y — ¢, is surjective.
Altogether, we have shown that this map is an isometric bijection from
H onto H*, as desired.
The final assertion is an obvious consequence of the conjugate-linearity
of the inner product in the second variable. |

This theorem, which is one among a diversity of results being called
the Riesz representation theorem, has several useful consequences that will
be covered in later courses. Our main application here will be to use it to
associate an adjoint operator to every bounded operator on a Hilbert space.
Some people like to think of the adjoint as a kind of twin (or as a kind
of shadow), which happens to coincide with the original operator in many
cases of interest.

Theorem 4.3.2. Let H be a Hilbert space (over F). For each T' € B(H),
there is a unique operator T* € B(H), called the adjoint of T, satisfying
(T(@).y) = (2. 7)) (43.1)

forallx,y € H.
The x-operation on B(H), T'— T*, enjoys the following properties:

For all S, T € B(H) and all o, 3 € F, we have
e i) (aSH+BT) =aS +pT*; ii) (ST) =T*S*; i) (T*) =T,
e ) [T =TI; v) IT*T| =T

Remark 4.3.3. If H and K are Hilbert spaces (over the same F), then one
may associate to each T' € B(H, K') a unique adjoint operator 7% € B(K, H)
satisfying forall z € H and all y € K, and enjoying similar properties.
We leave this as an exercise.

Proof of Theorem[{.3.4 Let T € B(H) and consider y € H. Using the
linearity of T and the linearity of the inner product in the first variable, we
get that the map ¢ : H — [F defined by

o(x) = <T(x),y> forall v € H,
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4.3. Adjoint operators

is a linear functional on H. Moreover, as we have

(@), 9)] < IT@ vl < IT] 2] [ly]

for all x € H, ¢ is bounded with [|¢| < ||T|||ly||- Hence, ¢ € H*, and
Theorem gives that there exists a unique vector in H, that we denote
by T*(y), such that ¢ = @r«(, , i.e., such that

(T(@),y) = (=, T"(y)) (4.3.2)
for all x € H. This theorem also gives that
1T W = ller=wll = llell < 1T lyll- (4.3.3)

As what we have done above holds for every y € H, we obtain a map
T*: H — H which sends each y € H to T*(y) € H. In view of ([£.3.2)), it is
clear that holds for all x,y € H.

To show that T* is linear, let i,y € H and a € F. Then, for all x € H,
we have

T(x),«
(T(x),
a<x, *(
= <x,aT*(

+ y'>
> + <T(x), y/>
)+ (2, T"(y))
)+ 7))
This implies that T*(ay + ') = aT*(y) + T*(y'), as desired.
Next, from ([£.3.3)), we see that 7* is bounded with || 7*|| < ||T'||. To show

the asserted uniqueness property of 7™, assume that S € B(H) satisfies the
same property as 1T, i.e.,

<T(x),y> = <x, S(y)> forall x,y € H.
Let y € H. Then, for all z € H, we get
(2,8(y)) = (T(x),y) = (=, T*(v))
This implies that S(y) = T*(y). Thus, S =T".
We leave the proof of properties i) and ii) as an exercise. To show the
other properties, let T' € B(H). Then, for each y € H, using equation (|4.3.1))
for T* instead of T', we get that, for all x € H, we have

(2, (T) () = (T"(x),y) = (v, T*(2))
- <T(y),l’> - <$,T(y>>

<3:, T (ay + y/)>

I
PR

)
Y

|
2l

Y
Y
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4. More on Hilbert spaces

This implies that (77%)*(y) = T'(y). Thus, (T*)* =T, i.e., 7i7) holds
Now, we have seen that ||T%|| < ||T"|| holds for all T'€ B(H). Thus we
get
1T = M) < 1T < AT -
Hence ||T*|| = ||T||, i-e., iv) holds.
Further, using iv), we get || T*T|| < |[T*||||T]| = |T||*>. On the other
hand, for every x € H, we have

I7@)P = (T(2). T(2)) = (. T*(T(x)))
~ |te <T*T><x>>\ < ll2) |(T*T)(@)]
< T o

This implies that [|T||* < [|T*T||. Hence we get ||T||*> = ||T*T, i.e., v)
holds. |

Example 4.3.4. Consider H = F" for some n € N with its usual inner
product, and 7" € B(H). Let A denote the standard matrix of 7. Then the
standard matrix of 7% is A* := A",

Here, A denotes the matrix obtained by conjugating every coefficient of
A, while B! denotes the transpose of a matrix B. Of course, if F = R, then
we just get A* = Al

Alternatively, we can formulate our assertion above by saying that if
T4 € B(H) denotes the operator given by multiplication with a matrix
A € M, (F), then we have

(T4)* = Tax.

To prove this, let z,y € H. Recall that (z,y) = 2'y. So we get
(Ta(x),y) = (Az)'g = 2'A'g = 2" Ay = (2, Ta- (y))-

Since this holds for all z,y € H, this implies that (74)* = T4« , as asserted.

More generally, if H is a nontrivial finite-dimensional Hilbert space, B is
an orthonormal basis for H, and [T]z is the matrix of T relative to B, then
we have

7] = ([T]5) -
The verification of this fact is an easy exercise. (One may argue in a similar
way as in the next example).

Example 4.3.5. Assume a Hilbert space H has a countably infinite or-
thonormal basis, enumerated as B = {u;}jen. Let T € B(H). For each
(7, k) € N x N, set

A(j k) = (T(w),u;) € F.
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4.3. Adjoint operators

We may think of the map A sending each (7, k) to A(j, k) as the (infinite)
matrix of 7' (w.r.t. B) since, for each k € N, we have

K = f: (T(ur), u)u; = f:lA(j, k) u; . (4.3.4)

Now, as every x € H has a Fourier expansion w.r.t. B, it is clear that T is
uniquely determined as a bounded operator on H by its values on B. Thus
we see from that T' is uniquely determined by its matrix A.

As T* € B(H) and

we can conclude that the matrix of 7 w.r.t. B is A*, where

A4, k) == Ak, 5)

so that, for all £ € N, we have

ZA* jk ZA

J=1

From and Parseval’s identity, we also get that

> 1AG R = 1T (u)|I* < |ITJ* < oo

for each k € N, so the /2-norms of the column vectors of A are uniformly
bounded. However, such a condition on the column vectors of an infinite
matrix A is not sufficient in general to ensure that A is the matrix of some
operator in B(H). There are some known conditions guaranteeing this, but
we will only look at two cases below where one can argue directly.

a) Let {\;},en be a bounded sequence in I, so that
M = sup{|\;| : j € N} < o0.

In other words, the function j — A; belongs to ¢>(N,F).
It is not difficult to see that there exists an operator D € B(H) satisfying
that
D(uy) = Muy  for each k € N, (4.3.5)

Indeed, consider x € H. Then Parseval’s identity gives that

i? )l <22 fim ) = 202 e < oo
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4. More on Hilbert spaces

Hence, Lemma gives that the vector
D(x) == Aj (z,u;) u

Jj=1

satisfies that (D(x),u;) = A; (x,u;) for each j € N. Thus, using Parseval’s
identity again, we get that

R 2
ID@)2 =3 [ @ ug)| < M2 2]
j=1

It follows now readily that the map x — D(z) gives an operator D € B(H)
such that ||D|| < M and satisfying ([£.3.5). Since | D| > ||D(ux)|| = |\l
for all k € N, we also have that ||D|| > M. Hence, ||D| = M.

It is now obvious that the matrix of D (w.r.t. B) is the diagonal (infinite)
matrix A defined for each (7, k) € N by

Ay if g =k,
0 otherwise.

A, k) = {

The operator D is often called the diagonal operator associated to {\;} en
(w.r.t. B).

From our discussion in the first part, we get that the matrix of D* is A*.
Thus we have D*(ug) = A\, uy, for all k € N, so D* is the diagonal operator
associated to { \; }jen (w.r.t. B).

b) We may also easily argue that there exists an operator S € B(H)
satisfying that

S(ug) = ugyy for all k € N. (4.3.6)
Indeed, since Y307, [(#, un—1)]* = 252, [(z,u;)]* = ||z]|* < oo for all 2 € H,

we may use Lemma [£.2.7] to define a map S : H — H by

oo

S(z) = Z (T, Uy 1) up,

n=2

which is then a linear isometry satisfying that S(u,_1) = u, for all n > 2

i.e., such that (4.3.6) holds. The map S is called the right shift operator on
H(w.r.t. B). The matrix of S (w.r.t. B) is the (infinite) matrix o given by

(k) 1 ifj=k+1,
o(j, k)=
J 0 otherwise.
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4.3. Adjoint operators

for each (j, k) € N. Thus, the matrix of S*(w.r.t. B) is the matrix o* given
by

.l - 1 ifk=45+1,
(. k) = ok, ) = {O otherwise

for all j, k € N, so we get that

0 if k=1,
Uk—1 if k Z 2.

§*(ux) = 30" () s = {

The operator S* is called the left shift operator on H (w.r.t. B). We note
that S* is not isometric, in fact not even injective, since S*(u;) = 0.

Example 4.3.6. Let (X, A, 1) be a measure space. Set L™ := L>®(X, A, u)
and H := L?(X, A, ). For each f € L®, we may define a "multiplication”
operator My € B(H) by

M;([g]) = [fg) forall [g] € H .

Indeed, this follows readily from Proposition m (with ¢ = 2). Now, for
all [g], [h] € H, we have

(My(lgh). [0)) = [ foTdu= [ g Fh du=lg]. Mz ().

This implies that (My)* = M.

Example 4.3.7. Let K : [a, b] X [a,b] — C be a continuous function and let
Tk denote the associated integral operator on H = L*([a, b)), cf. Example
[3.3.6] and Exercise B.I8 Then we leave it as an exercise to check that
(Tk)* = Tg~, where K*(s,t) := K(t,s) for all s,t € [a,].

As an illustration that the adjoint operator contains valuable information
about the original operator, we include a proposition showing the connection
between the fundamental subspaces associated to these operators.

Proposition 4.3.8. Let H be a Hilbert space (over F) and let T € B(H).
Then we have:

(a) ker(T) =T*(H)* and ker(T*) =T(H)*.

(b) T(H) = ker(T*)* and T+*(H) = ker(T)*.
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Proof. Both equalities in (a) are immediate consequences of @ Using
Exercisewith N =T(H), we then get T(H) = (T(H)%)* = ker(T*)*.
The second equality in (b) is shown similarly (or by replacing 7" with 7* in
the first one).

Corollary 4.3.9. Let H be a Hilbert space (over F) and let T € B(H).
Then the image of T is dense in H if and only if T* is injective (i.e., is
one-to one).

Proof. Using Proposition [4.3.8 and Corollary [4.1.4] we get
T(H)=H & ker(T*)*: = H < ker(T*) = {0}.
As T* is linear, we also have ker(7*) = {0} < T* is injective. [ |
As another illustration, we also mention:

Proposition 4.3.10. Let H be a Hilbert space (over F) and let T € B(H).
Then T is invertible in B(H) if and only if T* is invertible in B(H), in
which case we have (T*)™! = (T~1)*.

Proof. Left to the reader as Exercise [1.17] [ ]

4.4 Self-adjoint operators

In this section, we introduce one of the most important classes of bounded
operators on a Hilbert space and discuss some of their properties.

Definition 4.4.1. Let H be a Hilbert space (over IF). An operator T' € B(H)
is called self-adjoint when T* =T, that is, we have

<T(:v),y> = <x,T(y)> forall x,y € H.

If F = C, a self-adjoint operator in B(H) is also called Hermitian, while
it is often called symmetric if F = R.

We note that if T)7" € B(H) are self-adjoint, and A € R, then it is
obvious that AT+ T” is also self-adjoint.

Example 4.4.2. Let A = [a;x] € M,(F) and let T4 € B(F") denote the
operator given by multiplication with A (cf. Example . Then Ty is
self-adjoint if and only if A* = A, ie., @5; = a;y, for all j,k € {1,...,n}. In
particular, when F = R, T4 is self-adjoint if and only if A is symmetric.
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4.4. Self-adjoint operators

Example 4.4.3. Assume H is a Hilbert space with a countably infinite
orthonormal basis B. Let D denote a diagonal operator associated to a
bounded sequence {\;} en in F (w.r.t. B), as in Example m

Then D is self-adjoint if and only if \; = \; for all j € N, ie,, \; € R
for all 7 € N. In particular, D is always self-adjoint when F = R.

Let S denote the right shift operator on H (w.r.t. B). Then S* is the
left shift operator and it is obvious that S* # S. So S is not self-adjoint.

Example 4.4.4. Let (X, A, 1) be a measure space and set H := L*(X, A, j1).
If f € £, then the multiplication operator M; € B(H) defined in Example
is self-adjoint if and only if M7 = M;.
Thus, M; is self-adjoint whenever f is real-valued (p-a.e.). It can be
shown that the converse statement holds whenever (X, A, u) satisfies the
mild assumption that it is semifinite (cf. Exercise 4.22]).

Example 4.4.5. Let K : [a,b] X [a,b] — C be a continuous function
and let Tk denote the associated integral operator on H = L*([a,b]), cf.
Example hen Tk is self-adjoint if and only if Tx+ = Tk (where
K*(s,t) = K(t,s)). Hence it is clear that Tk is self-adjoint whenever K is
real-valued. We leave it as an exercise to check that the converse statement
also holds.

Example 4.4.6. Let M be a closed subspace of a Hilbert space H and let
Py denote the ortogonal projection of H on M. Then P,; is self-adjoint.

Indeed, let z,y € H. As Py(z) € M and y — Py(y) € M+, we have
(Pa(x).y — Pul(y)) =0.

Similarly, we have <x — Py (z), PM(y)> = 0. Hence we get

It is easy to create self-adjoint operators.
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Proposition 4.4.7. Let H be a Hilbert space (over F) and T € B(H).

Then T + T*, T*T and TT* are all self-adjoint. Moreover, if F = C,
then —i (T —T™) is also self-adjoint.

Proof. The reader should have no difficulty to verify these assertions by
using the properties of the x-operation on B(H) listed in Theorem 4.3.2, W

A noteworthy consequence is that bounded self-adjoint operators on a
complexr Hilbert space have a canonical decomposition similar to the one
enjoyed by complex numbers.

Corollary 4.4.8. Let H be a Hilbert space over C and let T € B(H). Set

1 1

Re(T) := 5(T +T7), Tm(T) = E(T -T).

Then Re(T) and Im(T) are both self-adjoint, and we have
T =Re(T)+ i Im(T).

Proof. The first assertion follows readily from Proposition[£.4.7 The second
one is elementary. |

Consider a bounded operator 7" on a Hilbert space H # {0}. The
numerical range of T is defined as the subset of F given by

Wr = {(T(x),2) 2 € H,||z]| = 1},

Some properties of T" are reflected in the geometric properties of W and of
its closure, see Exercise for some facts illustrating this. We will mainly
be interested in the numerical radius of T', given by

Ny :=sup{ |\ : A€ Wr} =sup{ [(T(x),z)|: x € H, ||z| = 1}.

We note that the Cauchy-Schwarz inequality implies that Ny < ||T]|.

As we are going to prove below, a remarkable fact is that N agrees with
|T|| when T is self-adjoint. We observe first that if 7" is self-adjoint, then
Wr CR. Indeed, if T* =T, then for every x € H, we have

(T'(z),2) = (x, T(x)) = (T'(z),z),
and the claim clearly follows.

Theorem 4.4.9. Let H be a Hilbert space, H # {0}, and let T € B(H) be
self-adjoint. Then we have
T = Nr.
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Proof. Tt suffices to prove that || T|| < Nr, hence that
IT(x)|| < Ny forall z € Hy. (4.4.1)

We first note that if v € H, then [(T'(v),v)| < Nr|v]*.
1

Indeed, if v = 0, the claim is trivial. Otherwise, if v # 0 and u := Y

so v = ||v[| u, then

(T @), 0)| = ol |{T(w), )| < Nr o]

Let now x € H;. If T(z) = 0, then the inequality in (4.4.1)) is trivially

satisfied, so we can assume that T(z) # 0 and set y == —— T'(z) € H.

T T@)
Then we have

L

1T ()|l = 7@ (T(@),T(z)) = (T(),y)- (4.4.2)

Similarly, ||7(z)|| = <y,T(a:)>. As T is self-adjoint, we get

IT @) = (T(y), ). (4.4.3)

Combining (4.4.2) and (4.4.3), and using our previous observations, as well
as the parallellogram law and the fact that ||z|| < 1, |ly|]| = 1, we get

IT@)) = 5 ((T@),9) + (T().))

= 1 (Tt )o+y) = (T =)o - )
1

2 2
< 2Nz (e +ylP + e = yl?)
1 2 2
=5 Nr (> + llyl1°)
< Nr.
This shows that (4.4.1)) is satisfied, as desired. [

Having in mind the spectral theorem for symmetric real matrices, it is
legitimate to wonder whether it could be true that every self-adjoint operator
T € B(H) is diagonalizable in the sense that there exists an orthonormal
basis for H consisting of eigenvectors for 7. One quickly realizes that this
can not be the case, as a self-adjoint operator may not have any eigenvalue
at all!
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Example 4.4.10. Let H = L?([0,1]) (with usual Lebesgue measure) and
let ' = M/ be the self-adjoint operator in B(H) given by multiplication with
the bounded continuous function f(¢) = ¢ on [0, 1], cf. Example m Then
the reader should have no trouble in checking that 7" has no eigenvalues.

We will see in the next chapter that every compact self-adjoint operator
can be diagonalized in the sense mentioned above. Theorem [£.4.9|will help us
to make the first step in proving this, by showing that a compact self-adjoint
operator T has at least one an eigenvalue, namely ||T|| or —||T||.

4.5 Unitary operators

In this section, we look at another important class of operators on Hilbert
spaces. As a warm-up, we first characterize the linear operators which are
isometric. We recall that if H is a Hilbert space, then a map T': H — H is
said to preserve the inner product when it satisfies

<T($), T(y)> = (x,y) forallz,ye H.

Proposition 4.5.1. Let H # {0} be a Hilbert space (over F) and let
S : H — H. Then the following conditions are equivalent:

(1) SeB(H) and S*S = Iy;
(17) S is linear and preserves the inner product;
(1ii) S is a linear isometry.

Proof. (i) = (ii): Assume S € B(H) satisfies S*S = Iy . Then S is linear
and for all z,y € H, we have

(8(x),S()) = (x,(S"S)(W)) = (x,v),

so (71) holds.

(i1) = (¢it1): Any map preserving the inner product is isometric, so this is
evident.

(13i) = (i): Assume S is a linear isometry. Then S € B(H) and T :=
S*S — Iy € B(H) is self-adjoint. Then for any € H, we have

(T(@),x) = ((§"S—I)(x),x) = (S(x), S(x)) —(z,x) = ||S(z)||* = |l = 0

Thus, Wy = {0}, so, using Theorem [4.4.9, we get that ||T|| = Ny = 0
Hence, T'= 0, i.e., S*S = Iy, so (i) holds. [ |
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Example 4.5.2. Assume H is finite-dimensional and S : H — H is a
linear isometry, so S*S = Iy, cf. Proposition As S is injective, it is
also surjective (since dim(S(H)) = dim(H) — dim(ker(S)) = dim(H), so
S(H) = H). Thus, S is bijective, so it has an inverse S~! (which is also a
linear isometry). Since S*S = I, we get that S~' = S*. In particular, we
also have SS5* = Iy.

Remark 4.5.3. When H is infinite-dimensional, then a linear isometry S
is not necessarily surjective. A typical example is the right shift operator S
considered in Example 4.3.5] whose range does not contain the first basis

vector; in this case, we have S*S = Iy, while SS* # Iy (cf. Exercise |4.20)).

Definition 4.5.4. Let H be a Hilbert space (over F). An operator U € B(H)
is called unitary when it satisfies

U'U=0U"=1Iy.

Thus, U € B(H) is unitary if and only if U is bijective and U~ = U*.

When F = R, some authors use the word orthogonal instead of unitary.

Proposition 4.5.5. Let H be a Hilbert space (over F) and let U : H — H.
Then the following conditions are equivalent:

(1) U e B(H) and U is unitary;

i is bijective, linear and preserves the inner product;
(i) U is bijective, li dp the inner product:
(1i1) U is a surjective linear isometry.

Proof. (i) = (i1): If U € B(H) is unitary, then U is bijective and linear,
and Proposition m gives that it preserves the inner product. Hence, (1)
holds.

(i7) = (zii): This implication is evident.

(17i) = (i): Suppose U is a surjective linear isometry. As a linear isometry
is injective, U is bijective. Moreover, Proposition gives that U*U = Iy.
So we get that U~ = U*, i.e., U is unitary, and (i) holds. |

Example 4.5.6. Assume H has a countably infinite orthonormal basis B
and D is the diagonal operator associated to a bounded sequence {\;};en
in F (w.rt. B).

Then it is straightforward to check that D is unitary if and only if
A =1, 1e, [N =1, forall j €N.
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Example 4.5.7. Let (X, A, ;1) be a measure space and set H := L*(X, A, 11).
For f € £, consider the multiplication operator M; € B(H). Then we
clearly have

(My)" My = M2 = My (My)",

so we see that M is unitary whenever |f| =1 p-a.e. The converse holds if
1 is semifinite, cf. Exercise [4.29]

Example 4.5.8. Let H = (*(Z). We may then define the bilateral forward
shift operator U : H — H by

[U(](J)=&G—1) forall € € H and all j € Z.

Indeed, since the counting measure on Z is obviously translation-invariant,
we have > ez [€(7 — 1)|* = 3¢z [£())]* < o0, so we see that U(£) € H and
NU(&)]l2 = [|£]|2. Thus U is isometric.

Clearly, U is also linear. Moreover, it is surjective: if n € H, then we
have U(§) = n, where £ is defined by £(j) :=n(j + 1) for every j € Z; one
may here argue as above to see that £ € H.

We may now conclude from Proposition[4.5.5that U is unitary. Its adjoint
U* = U~ is called the bilateral backward shift operator (on H = (*(Z)). We
note that if B = {e,}nez denotes the canonical basis of H = (*(Z) as in
Example [4.2.4] then we have

Ule,) =en1 and U(e,) =e,-1 forallneZ.

Let now H, K be Hilbert spaces (over F). A bijective, linear map U from
H onto K which preserves the inner product is often called an #somorphism
of Hilbert spaces. As in Proposition [4.5.5] one shows that it is equivalent to
require that U is a surjective linear isometry, or that U € B(H, K) is unitary
in the sense that we have U*U = Iy and UU* = Ik. (Here, U* € B(K, H)
denotes the adjoint of U, cf. Remark . We will say therefore say that
H and K are isomorphic as Hilbert spaces when such a map U : H — K
exists.

Theorem 4.5.9. Let H # {0} be a Hilbert space over C, and let B be an
orthonormal basis of H. Then H and (*(B) are isomorphic as Hilbert spaces.

Proof. Let x € H and define 7 : B — C by

)

(u) := (x,u) forall u € B.
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4.5. Unitary operators

Then Parseval’s identity says that >,z |Z(u)[* = ||z||*. In particular, we
have 7 € (*(B) and ||Z|| = ||z||. Thus we can define an isometric map
U:H — (*(B) by
U(x)=2 forallze H.
It is elementary to check that U is linear. Moreover, U is surjective.
Indeed, let & € (2(B). As Y ,ep|é(u)|? < oo, the set

Be :={ueB:&u)#0}

must be countable. Let {u;};jeny be an enumeration of B, where N =
{1,...,n} forsomen € Nor N =N. If N =N, we have 352, |(u;)|* < o0,
and this implies readily that the sequence {Z?Zl &(uy) uj}keN is Cauchy,

hence convergent in H. Thus we may define € H by x := > ;o n &(u ) uj,
and we then have

B(u) = (z,u) = > &(u;){u;,u) =

JEN

E(ug) if u = uy for some k € N,
0 ifueB\Bg,

i.e., Z(u) = &(u) for all uw € B. Hence, U(z) = &, showing that U is surjective.

We can now conclude that U is an isomorphism of Hilbert spaces from
H to (*(B), as we wanted to show.
|

Remark 4.5.10. Theorem is also true when H # {0} is a Hilbert
space over R, but one has then to replace ¢?(B) with the real ¢*-space

EB)={:B-R: > [ < oo, }

u€eB

considered as a Hilbert space over R.

Remark 4.5.11. If H # {0} is a Hilbert space over C, and B, B’ are both
orthonormal bases of H, then we get from Theorem that ¢(2(B) and
(*(B') are isomorphic as Hilbert spaces. It can be shown that this implies
that (and in fact is equivalent to) B and B’ having the same cardinality,
meaning that there exists a bijection between B and B’. (A similar statement

holds if H # {0} is a Hilbert space over R).
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4.6 EXxercises

In the exercises of this chapter, H always denotes a Hilbert space over [,
unless otherwise stated.

Exercise 4.1. Consider X := (*(N) as a metric space w.r.t. d(f,g) =
|/ — gll.- Let A be the subset of X given by

A= {a(N) N € N},

where a™(n) =1if 1 <n < N and a™(n) =0if n > N.
a) Show that A is closed in X.
b) Let x € X be given by x(n) =1+ 1/n for all n € N.
Show that d(z, A) = 1 and that 1 < d(z,a™) for all N € N.

Exercise 4.2. Let c € H,r > 0andset B:= B,.(c) ={y € H : ||ly—c|| < r}.

Check that B is closed and convex, and give a formula for 25 when = € H\ B.
Exercise 4.3. Let S denote a nonempty subset of H and set
M := Span (5).

Verify that S+ = M+, Then deduce that M = (S+)*. Deduce also that
if N is a subspace of H, then N = (N+)+.

Exercise 4.4. Let M be a closed subspace of H, and let x € H.
Show that Py;(z) = o for some yo € M if and only if 2 — yo € M.
Show also that Py (z) is the unique vector yo in M such that z — yo € M*.

Exercise 4.5. Assume P € B(H) is a projection satisfying || P|| = 1. Show
that P is the orthogonal projection of H on M := P(H).

Hint: Recall that H = P(H) @ ker P (cf. Proposition [3.2.11]).

Exercise 4.6. Consider H = L*([a, ], A, i), where A denotes the o-algebra
of all Lebesgue measurable subsets of [a,b], and p is the usual Lebesgue
measure on 4. Set

M::{[g]GH:QEEQ,/[ab]gduzo}.

Check that M is a closed subspace of H. Then, given [f] € H, find an
expression for the best approximation of [f] in M.
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Exercise 4.7. Let Hy, Hy be Hilbert spaces over F and consider H :=
H, x Hy as a vector space over F. For (x1,z2), (y1,y2) € H, set

<($1,x2), (yl,y2)> = (z1, 1) + (22,72).

a) Check that this gives an inner product on H such that H is a Hilbert
space. Check also that the associated norm on H corresponds to the norm
|| - || arising from the norms on H; and Hs.

b) Set Hy := {(x1,0) : 2y € Hy} and Hy := {(0,2) : 25 € Hy},
so H=H,+ H, (cf. Exercise .

Check that (H,)* = H, and (H,)* = H,. Deduce that the projection
of H on H, along H, is the orthogonal projection of H on H;.
Exercise 4.8. Let (X, A, 1) be a measure space.

a) Show that

= gd
(If1:lg)) == [ fg

gives a well-defined inner product on L? = L*(X, A, i) (cf. Example [4.1.6)).

b) Let £ € A Set Ap ={ANE:Ac A} and g = pya,. We recall
that (E, Ag, 1p) is a measure space.

Show that there exists an isometric isomorphism from L*(E,Ag, ug)
onto the space Mg defined in Example 4.1.6

Exercise 4.9. Let H # {0}. Show that the following conditions are
equivalent:

(a) H is separable;
(b) There is a sequence satisfying the assumptions in Example

(c) H has a countable orthonormal basis.

Note that Example shows that (b) = (c). So it suffices to show that
(a) = (b), and (c) = (a).

Exercise 4.10. Let H; and Hy be Hilbert spaces over [F, and let H be the
(external) direct product of H; and Hs, as defined in Exercise Assume
By and B, are orthonormal bases for H; and Hs, respectively.

Find an orthonormal basis B for H in terms of B; and Bs.

71



4. More on Hilbert spaces

Exercise 4.11. Let H = L*([—1,1], A, i), where A denote the Lebesgue-
measurable subsets of [—1, 1] and p is the restriction of the usual Lebesgue
measure to A.

For each n € {0} UN, let p,41 : [—1,1] — C be defined by p,1(t) = ",
and set S := {[an] :n € {0} UN} CH.

a) Show that Span (S) is dense in H.

b) Apply the Gram-Schmidt orthonormalization process to S to obtain
an orthonormal basis B = {[an] :ne{0}U N} for H, where each ¢, is
the polynomial on [—1, 1] given by

VI 0 2y

onpl  dn

Qn+1(t) =
(These polynomials are called the normalized Legendre polynomials.)

Exercise 4.12. The concept of generalized sums can be used to provide an
alternative way of describing Fourier expansions in Hilbert spaces.

Let X be a normed space, J be a nonempty set, {x;};es be a family of
elements of X, and v € X. Then one says that the generalized sum > ;¢ ; ;
converges to x when the following holds: given € > 0, there exists a finite
subset Fy C J such that for all finite subsets F of J containing Fy, we have

Hx—ijH <e,
jeF

in which case we write

x:ij.

jeJ
Consider a Hilbert space H and x € H.
a) Show that we have

r=)Y (z,u)u.

ueB

b) Show also that if M is a closed subspace of H and C is an orthonormal
basis for M, then we have

Py(z)=> (z,0)v.

veC
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Exercise 4.13. In the context of Fourier analysis described in Example

4.2.12| (see also Example |4.2.2)), the formula
~ 2
113 =3 |F(m)]

nez

is called Parseval’s identity. (The more general equality obtained in Theorem
c) is also often called Parseval’s identity.)

a) Set f(t) =t for all t € [—m, 7|. Compute the Fourier coefficients of f.
b) Use a) and Parseval’s identity to show that

00 1 7T2
P

c) Set g(t) = e’ for all t € [—m,w]. Use Parseval’s identity to obtain a
formula for the sum of the series

s 1
nz::an—i-l'

Exercise 4.14. Let H be the L?-space on [—m, 7| w.r.t. to the normalized
Lebesgue measure p, as in Example [£.2.2] Set

Heven :={[f] € H : f iseven} and Hegq = {[f] € H : f is odd}.
We recall that f: [—m, 7] — C is called even if f(—t) = f(t) for all ¢, while

it is called odd if f(—t) = —f(t) for all ¢.

a) Show that Heyen is a closed subspace of H and that (Heyen)™ = Hodg-
Describe the orthogonal projection P of H on Heyen.

Hint: Tt might be helpful to consider the map [f] — [f |, where f(t) := f(—t).

b) Find an orthonormal basis for Heyen and one for Hogg.

Exercise 4.15. Let 7' € B(H). Assume Hj is a dense subspace of H which
is invariant under 7', and let Ty € B(Hy) denote the restriction of T' to Hy.
Further, assume there exists some Sy € B(Hy) such that

<T0(x)7y> = <x, So(y)> for all z,y € Hy.

Show that 7" = S, where S € B(H) is the unique extension of Sy provided
by Theorem [3.3.2]
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Exercise 4.16. Show that the formula for (T)* in Example is correct.
Hint : Consider Hy = [g] : g € C([a,b])} and use Exercise {4.15|

Exercise 4.17. Prove Proposition [£.3.10}

Exercise 4.18. Let v, w € H and consider the linear operator 7, ,, : H — H
defined by
Tyw(x) = (z,0)w foralzeH.

Note that T, ., has rank one if v,w € H \ {0}.

a) Show that 7, ,, is bounded with norm ||T;, .|| = ||v|| ||w||. Then show
that (T}, 4)* = Tipo-

b) Show that every T € B(H) which has rank one is of the form 7" =T, ,,
for some v, w € H \ {0}.

c) Assume T € B(H) is a finite-rank operator, 7" # 0. Show that 7" may
be written as a finite sum of rank one operators in B(H).

Hint : Start by picking an orthonormal basis for T'(H).
d) Show that if " € B(H) is a finite-rank operator, then so is 7.

Exercise 4.19. Let T' € B(H) and let M be a closed subspace of H.
Show that

M is invariant under 7" if and only if M+ is invariant under 7.
Exercise 4.20. Let T € B(H).
a) Show that ker(7") = ker(T*T) and T*(H) = (T*T)(H).
b) Assume T is normal, i.e., satisfies T*T = TT*. Show that

ker(T*) = ker(T) and T*(H)=T(H).

c) Assume T is normal and has an eigenvalue . Show that A is an
eigenvalue of 7%, and that B = EY.

d) Assume H has a countably infinite orthonormal basis B = {u;}jen
and let S € B(H) be the right shift operator (w.r.t. B). Set T'= S*.

Show that 7' is not normal by checking that TT* = S*S = Iy, while
T*T = SS* = P, where P is the orthogonal projection of H on {u;}*.

Check also that 0 is an eigenvalue for 7', while 0 is not an eigenvalue
of T* = S. (This shows that ¢) does not necessarily hold when 7" is not
normal.)

Finally, if you are in the right mood, show that S has no eigenvalues,
while every A satisfying |[A| < 1 is an eigenvalue of T'.
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Exercise 4.21. Let H and K be Hilbert spaces over F, and let T € B(H, K).
a) Show that there exists a unique operator 7% € B(K, H) (called the
adjoint of T') satisfying that
<T(z),y> = <x,T*(y)> forall x € H and all y € K.

b) Let 7" € B(H, K) and «, 5 € F. Let also L be a Hilbert space over [F, and
let S € B(K, L), so that ST € B(H, L). Show that the following properties
hold:

o i) (aT+BT) =aT*+pT'*; i) (ST) =T*S*; i) (T*) =T;
o i) T =|T|l; ) T*T| = T*
Exercise 4.22. Let (X, A, 1) be a measure space. One says that (X, A, u)

is semifinite when the following condition holds: if £ € A and u(E) = oo,
then there exists F' C E, F' € A such that 0 < u(F) < oo.

a) Show that (X, A, ) is semifinite whenever it is o-finite.

Assume from now on that (X, A, ) is semifinite. Set H := L*(X, A, p).
Let f € £ and consider the multiplication operator My € B(H) defined in

Example [1.4.4]
b) Show that [[Myl] = |1/
c) Show that if My is self-adjoint, then f is real-valued p-a.e. (As

observed in Example [4.3.6} the converse is true without any restriction on

(X, A, 1))

Exercise 4.23. Assume P € B(H) is a self-adjoint projection, i.e., it
satisfies that P* = P = P2, Show that P is the orthogonal projection of H
on M := P(H) (which is closed subspace of H, cf. Proposition [3.2.11)).

Exercise 4.24. Let H # {0}.
a) Assume T € B(H) is self-adjoint. Deduce from Theorem that
T =0 if and only if <T(m),m> =0forall x € H.

b) Suppose F = R. Give an example with H = R? showing that the
equivalence in a) may fail when 7" is not self-adjoint.

¢) Assume F = C and let T' € B(H). Show that 7' = 0 if and only if
<T(m),x> =0forall x € H.

Exercise 4.25. Show that the set B(H)s, := {T € B(H) : T* = T} is
closed in B(H).
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Exercise 4.26. Let H # {0}. If T" € B(H) is self-adjoint, we have seen that
Wr C R; of course, if F = R, this gives no information on 7" as this inclusion

is then true for any 7" in B(H). We assume therefore in this exercise that
H # {0} is a Hilbert space over C.

Let T' € B(H). Then show that the following assertions are equivalent:
(1) T is self-adjoint;
(i1) Wr CR;
(vi1) <T(x),x> eRforall x € H.
Exercise 4.27. A self-adjoint operator T in B(H) is called positive when
<T(:c),:c> >0 forallze H, (4.6.1)

in which case we write 7" > 0.

(We note that if F = C and T € B(H) satisfies (4.6.1]), then T is
automatically self-adjoint, as follows from the previous exercise.)

a) Let S € B(H), and let R € B(H) be self-adjoint.
Check that S*S > 0 and R? > 0. Then show that

IS| <1 & (Iy —8*8) > 0.

b) Let M be a closed subspace of H. Check that Py, > 0.

¢) Assume that T, 7" € B(H) are positive and A € [0, c0).
Check that T'+ 7" and AT are also positive.

d) Show that the set of positive operators in B(H) is closed in B(H).

Exercise 4.28. Let H = L*([0,1]) (with usual Lebesgue measure) and let
T = M; be the self-adjoint operator in B(H) given by multiplication with
the function f(t) = ¢ on [0,1], cf. Example Show that T has no
(complex) eigenvalues.

Exercise 4.29. Let (X, A, ;1) be a semifinite measure space (cf. Exercise
, and let f € £%. Suppose that the multiplication operator M; on
H = L*(X, A, i) is unitary. Then show that |f| = 1 p-a.e.

(As observed in Example the converse statement is true without any
restriction on (X, A, u).)
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Exercise 4.30. Assume H # {0} is separable (cf. Exercise [1.9) and infinite-
dimensional. Let then B be an orthonormal basis for H indexed by Z, say
B = {v}kez. One may then define the bilateral shift operator V : H — H
(w.r.t. B) by

V(z) =Y (z,v)vppr forallz € H, ie., by

kEZ

n

V(z) = lim k; (x,v5) vy forall z € H.

a) Show that V' is a unitary operator in B(H).

b) Describe V' as a multiplication operator when H = L*([—7,7]) (with
normalized Lebesgue measure p) and vy (t) = e for every k € Z.

c) Assume F = C. Let U : H — (*(Z) denote the isomorphism of
Hilbert spaces defined in the proof of Theorem [£.5.9, Show that UV U* is
the bilateral forward shift operator on (?(Z).

Exercise 4.31. Let T be a bounded operator on a Hilbert space H # {0}.
Check that the following properties of W and N hold:

(a) Wp« = {X A E WT}; hence, Ny« = Nr.

(b) Wr contains all the possible eigenvalues of T'.
(

)
)

c) Warspr, =aWr+p  forala,feF.

d) Wyru« = Wr, hence Nyry« = Nr, for every unitary U € B(H).
)

(
(e) Wy is a compact subset of F when H is finite-dimensional.

It can also be shown that Wr is a convex subset of IF. This result is called
the Toeplitz-Hausdorff Theorem, but the proof is beyond the scope of these
notes.
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CHAPTER 5

On compact operators

5.1 Introduction to compact operators
between normed spaces

We had a very brief encounter with compact operators at the end of Section
3.1l For the ease of the reader, we recall their definition. In this section, X
and Y will denote normed spaces, both over [F, unless otherwise specified.

Definition 5.1.1. An operator 7" € L(X,Y) is called compact if the se-
quence {7T'(z,)}nen has a convergent subsequence in Y whenever {x,, },cy is
a bounded sequence in X.

We set K(X,Y):={T € L(X,Y):T is compact }.

To appreciate this definition, the concept of relative compactness for
subsets of a metric space will be helpful.

A subset A of a metric space (Z,d) is called relatively compact in Z
if its closure A is a compact subset of Z. (Some authors say precompact
instead of relatively compact.) Equivalently, and this may be taken as the
definition for our purposes, a subset A of Z is relatively compact in 7 if
and only if every sequence in A has a subsequence which converges in Z. In
comparison, we recall that A is compact if and only if every sequence in A
has a subsequence which converges in A.

We also remark that A C Z is bounded whenever A is relatively compact
in Z: indeed, if A is not bounded, then we can pick (any) z € Z and find a
sequence {a, }nen in A such that d(a,, z) > n for all n € N; it is then rather
easy to see that {a,}n,en has no convergent subsequence in Z, so A is not
relatively compact.

Proposition 5.1.2. Let T € L(X,Y). Then T is compact if and only if
T(B) is relatively compact in'Y whenever B is a bounded subset of X.
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Proof. Assume first that T is compact and let B C X be bounded. We want
to show that T'(B) is relatively compact in Y. So let {y, }nen be a sequence
in T'(B). For each n € N we may then write y,, = T'(x,) for some z,, € B.
As the sequence {z, }nen lies in B, it is bounded. Hence, by compactness of
T, {yn}nen = {T(x, }nen has a convergence subsequence in Y. Thus, T'(B)
is relatively compact, as desired.

Conversely, assume that 7" maps bounded subsets of X into relatively
compact subsets of Y. We want to show that 7" is compact. So let {x, },en
be a bounded sequence in X. Set B := {x,, : n € N}. Then B is a bounded
subset of X, so T'(B) = {T'(x,) : n € N} is relatively compact in Y. As
{T(x,) }nen is a sequence in T'(B), we can conclude that it has a convergent
subsequence in Y. Thus, T is compact, as desired. |

Corollary 5.1.3. Assume T € L(X,Y) is compact. Then T is bounded.
Thus, K(X,Y) C B(X,Y).

Proof. Set B := X;. Since B is a bounded subset of X, we get from
Proposition that T'(B) is relatively compact subset of Y. This implies
that 7'(B) is bounded. Hence we can find M > 0 such that ||T'(z)| < M
for all z € X, and it follows that 7" is bounded with ||T|| < M. [ |

As we have seen previously in Section [3.1] cf. Proposition [3.1.9] an

important class of compact operators consists of the finite-rank operators in
B(X,Y).

Example 5.1.4. Consider X = C([0, 1], R) with the uniform norm || - ||..
For g € X, define T'(g) : [0,1] — R by

(T(9)](s) = /01 sin(s —t) g(t) dt  for all s € [0,1].

Since sin(s — t) = sin(s) cos(t) — cos(s) sin(t), we have that

(o)) = ([ " cos(t) g(t) dt) sin(s) — ( / sin() g(t) dt) cos(s)

for all s € [0, 1]. It follows that T'(¢g) € X. Moreover, the map T : X — X
sending g to T'(g) is clearly linear. As T'(X) is 2-dimensional, 7" has finite-
rank. Further, since

T)s)| < [ lsinGs ~ Do)l de < [ o) d < gl

for all s € [0, 1], we get that |T'(g)|l. < ||g|l. for all ¢ € X. Hence, T is
bounded. We can therefore conclude that 7' is compact.
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More generally, using the Arzela-Ascoli Theorem (cf. Lindstrgm’s book),
it can be shown that if a function K : [a,b] X [¢,d] — R is continuous, then
the associated integral operator T': C([c,d],R) — C([a, b], R), defined by

d
[T(9)](s) = /C K(s,t)g(t) dt for all s € [a,b],
is compact.

Theorem 5.1.5. K(X,Y) is a subspace of B(X,Y). Moreover, if Y is
a Banach space, then K(X,Y) is closed in B(X,Y), and it follows that
K(X,Y) is a Banach space.

Proof. We leave the proof of the first assertion as an exercise. So assume that
Y is Banach space, and let {7, },en be a sequence in K(X,Y') converging
to some 7' € B(X,Y). To show that K(X,Y) is closed in B(X,Y'), we have
to show that 7' is compact.

So let {x, }nen be a bounded sequence in X. Choose M > 0 such that
|zn]| < M for all n € N.

« Since T} is compact, there exists a subsequence {z,, }ren of {Zn }nen
such that 71 (z,, ) — v1 as k — oo for some y; € Y.

We set x1, := x,, for each & € N. We then have T'(x1,) — 11 as
n — oo.

o Similarly, since {x; , }nen is bounded and T is compact, we can find a
sequence {xs, }nen, which is a subsequence of {x; ,, }nen, and therefore
of {x,, }nen, such that Th(xs,) — Yo as n — oo for some y, € Y.

o Proceeding inductively, for each m € N, m > 2, we can find a sequence
{Zm.n}nen, which is a subsequence of {,,—1 ., tnen, and therefore of
{Zn }nen, such that T, (xpmn) — Ym as n — oo for some y,, € Y.

We now set z), := x; € X for each k € N, and claim that
{T(x},) }ren is a Cauchy sequence in Y. (5.1.1)

Since Y is complete, we will then be able to conclude that {T'(x}) }ren has
a convergent subsequence. As this subsequence will then be a subsequence
of the sequence {T'(x,)}nen, we will thereby have shown that 7' is compact.

To establish (5.1.1]), we first observe that for any k,l,m € N, we have
1T(2}) = T (@)l < (T = To) (@) + Tin(2]) — Ton(@y) + (T — T) ()|
(T = To) (@) | + 11T (27) = Ton (@) | + (T — T) (23]
1T = Tl 2| + (1T (27) — T (i) | + (| T — Tl [l
1T (2]) — Tan(@i) || + 2M || T = T -

(VAN VAN VAN VAN
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Let then € > 0 and choose m € N such that |T — T,,|| < ¢/3M. By
construction, for each k& > m, we have that T, (z},) = T, () is an element
of the sequence {7},,(Z, ) fnen, which is convergent to y,,. It follows that
the sequence {T,,(x})}ren is convergent, hence that it is Cauchy. So we can
pick N € N such that ||T,,(z]) — Ton(z},)|| < /3 for all k,1 > N. This gives
that

|7 (z) =T (@)l < T (7)) =T (wp) |[4H2M || T=Ton|| < £/34+2M (£/3M) = €

for all k,1 > N. Hence we have shown that the claim (5.1.1)) is true.

Finally, as Y is a Banach space, we know that B(X,Y’) is a Banach
space too, and this implies that (X, Y’), being closed in B(X,Y), is also a
Banach space. |

An immediate consequence is the following:
Corollary 5.1.6. Assume Y is a Banach space and set
F(X,Y):={T € B(X,Y) : T has finite-rank }.

Then we have

F(X,Y) C K(X,Y).

Example 5.1.7. Let 1 < p < oo and set X := (?(N), which we know is
a Banach space w.r.t. || - ||,. For each A € £*(N), we may consider the
multiplication operator My € B(X) given by

[My(2)](n) = Aln) 2(n)

for all z € X and all n € N. One readily checks that ||M,|| = [|A]cc-
Now, assume that A € ¢o(N), i.e., lim,_, A(n) = 0. Then M, is compact.
Indeed, for each k € N, let A(®¥) € ¢>°(N) be defined by

AB () = {)\(n) if1<k<n,

0 otherwise,
for every n € N. Then it is clear that each M,x has finite-rank; moreover,
| My — Myw ]| = |A = AP||e = 0 as k — oo.

Thus M, € F(X, X) € K(X, X).
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5.2. On compact operators on Hilbert spaces

We set K(X) = K(X,X), so that K(X) is a subspace of B(X). If
X is finite-dimensional, then every operator in B(X) has finite-rank, so
K(X) = B(X). On the other hand, if X is infinite-dimensional, then
KC(X) # B(X), the reason being that the identity operator Iy is not compact
in this case: indeed, if X is infinite-dimensional, then Ix(X;) = X7 is closed,
but not compact, (cf. Exercise .

We also mention (cf. Exercise that K(X) is a two-sided ideal in
B(X), meaning that we have

ST € K(X) if S € B(X) and T € K(X), or if S € K(X) and T € B(X).

This property implies that no operator in (X) can have a bounded inverse
when X is infinite-dimensional (for if T € K(X) has an inverse 7! € B(X),
then we must have that Ix = T7!'T € K(X), so dim(X) < 00).

We end this section with an interesting result concerning the possible
eigenvalues of a compact operator.

Theorem 5.1.8. Let T € K(X). Then the following facts hold:

(a) Let 6 > 0. Then {\ € F: X is an eigenvalue of T and |\| > 0} is a
finite set.

(b) If X\ € F is a non-zero eigenvalue of T, then the associated eigenspace
is finite-dimensional.

(¢) The set of eigenvalues of T' (which may be empty) is countable and
bounded. If this set is countably infinite and {\x, : k € N} is an enumeration
of it, then limg_,o Ay = 0.

As we will be mostly interested in compact self-adjoint operators acting
on Hilbert spaces in this course, for which much more can be said (cf.
Theorem [5.3.4)), we skip the proof of thi more general theorem.

5.2 On compact operators on Hilbert spaces

In view of Corollary [5.1.6], it is natural to wonder whether any compact
operator from a normed space to a Banach space may be approximated in
operator norm by bounded finite-rank operators. This problem was open
until 1973, when a counterexample was exhibited by P. Enflo. Happily, the
situation is as nice as possible when the target space is a Hilbert space.

Theorem 5.2.1. Let X be a normed space and H be a Hilbert space (both
over F). Then we have

F(X,H) = K(X,H).
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5. On compact operators

Proof. By Corollary we only have to show that (X, H) C F(X, H).
So let T € K(X,H), and let ¢ > 0. We need to prove that there exists
S € F(X, H) such that |7 — S|| < e. Clearly, we can assume 7" # 0.

Set A := T(X;). Since X; is bounded and 7T is compact, the set A
is compact in H. As H is a metric space, this implies that A is totally
bounded (cf. Proposition 3.5.12 in Lindstrom’s book). Hence we can cover
A with some open balls By, ..., B, of radius /4, having respective centers

ai,...,a, € A. For each j =1,...,n, we can then find z; € X; such that
la; = T(x;)l| <e/4.

Set now F':= Span ({T'(x1),...,T(x,)}), which is a finite dimensional
subspace of H, and let Pr denote the orthogonal projection of H on F'. Since
the range of PrT is contained in F', PpT has finite-rank, so PrT € F(X, H).
We claim that

|7 —PpT|| <e.

Indeed, let x € X;. Then T'(x) € A, so T'(z) € B; for some j € {1,...,n}.
Hence,

IT(z) =TIl < IT(@) = ajll + lla; = T(z;)|| < efd+e/d=e/2.

Further, since T'(x;) € F, we have that Pg(T(x;)) = T'(z;). Thus, using
also that || Pr|| = 1, we obtain that

I(T = PeT)(@)| = |1 T(x) = T(x;) + (PeT)(w5) = (PrT)(@)|
I7@) = Tl + 1 Pe (T ;) = T(a)
(#) = T())

< |
< |[T(z) = Tyl + | PI|T ;) = T()|
= 2| T(x) = T(x)|

<2-g/2=¢.

As this holds for every x € X, the claim follows. Hence, setting S := PpT,
we are done. ]

Remark 5.2.2. Let X be a normed space and H be a Hilbert space, and

let T'e (X, H). Then it can be shown that 7'(X) is separable. We leave
this as an exercise.

Theorem [5.2.1] immediately gives:

Corollary 5.2.3. Let H be a Hilbert space. Set K(H) := K(H,H) and
F(H) :=F(H,H). Then we have
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An application of this result is the following;:

Corollary 5.2.4. Let H be a Hilbert space and let T € K(H). Then
T* € K(H). In other words, KC(H) is closed under the adjoint operation.

Proof. Using Corollary [5.2.3] we can find a sequence {7, } in F(H) such
that ||T"— T,,|| — 0 as n — oo. Now, it is not difficult to see that F(H)
is closed under the adjoint operation (cf. Exercise 4.18)). Hence, {T)*} is a
sequence in F(H), and we have

1T =T = (T = T)" | = [T = Toll = 0 as n = oo.

Thus, T* € F(H) = K(H). N

We recall from the previous section that if H is finite-dimensional, then
K(H) =B(H) = F(H), while K(H) # B(H) if H is infinite-dimensional.
An elementary argument showing that Iy is not compact can be given
in this case: letting then {u,};eny be any orthonormal sequence in H, we
have |lu; — ui|| = V2 for all j,k € N, and it follows that the sequence
{Ir(uj)}jen = {u;j}jen does not have any convergent subsequence.

Let H be an infinite-dimensional Hilbert space H. An interesting class of
compact operators on H containing F(H) consists of the so-called Hilbert-
Schmidt operators. For simplicity, we only consider the case where H is
separable. We note that every orthonormal basis for H is then countable:
indeed, assume (for contradiction) that H had an uncountable orthonormal
basis B. Then, as ||u — /|| = /2 for all distinct u,u’ € B, we see that
any dense subset of H would have to be uncountable, contradicting the
separability of H.

Lemma 5.2.5. Assume H is a separable, infinite-dimensional Hilbert space
(over F). Let B = {u;}jen and C = {v;}jen be orthonormal bases for H,
and let T' € B(H). Then we have

ZIIT uy)|* = ZIIT u)ll*-

Proof. Using Parseval’s identity (two tlmes), we get

znTu] )2 = ZZK u]>,vk>!2=§§\<uﬂ*<vk>>!2

=3 S w)f = 3 ST o))

- i 17 ()12
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5. On compact operators

Note that the change of order of summation at the second but last step
above is allowed since we are dealing with sums of non-negative numbers.
Applying what we have done to the case where B = C, i.e., u; = v; for every
j € N, we get that

Z 1T (v)|I” = Z 177 (vi) || -
Thus we obtain that

ZIIT ug)|[* = ZHT* )|* = ZIIT i)l

as desired. [ |

Remark 5.2.6. An analogous result is true when H is finite-dimensional
and B,C are orthonormal bases for H.

Definition 5.2.7. Let H be a separable, infinite-dimensional Hilbert space
(over ). An operator T € B(H) is called an Hilbert-Schmidt operator when
we have

ST ()] < oo

i=1

for some orthonormal basis B = {u;};en of H, in which case we set

A= (ZHT u)?)”.

Lemma[5.2.5]shows that the definition of 7" being a Hilbert-Schmidt operator,
and the value of ||T||2, do not depend on the choice of orthonormal basis for
H. We also set

HS(H) :={T € B(H) : T is a Hilbert-Schmidt operator} .

Proposition 5.2.8. Let H be a separable, infinite-dimensional Hilbert space
(over ).

Then HS(H) is a subspace of KK(H), which contains F(H) and is closed
under the adjoint operation.

Moreover, the map T — ||T||2 is a norm on HS(H), which satisfies

171 < 117l

for every T € HS(H).
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5.2. On compact operators on Hilbert spaces

Proof. We first note that it is evident from the proof of Lemma that
T € HS(H) whenever T' € HS(H).

Let B = {u;}jen be an orthonormal basis for H, and let T, 7" € HS(H).
Define &, ¢ € (?(N) by
§G) =T ()|l and  &'(j) == [[T"(u)||  for each j € N,

so that ||£]|2 = ||7']|2 and ||€'[|2 = ||T”]|2. Using the triangle inequality, first
in H, and then in (*(N), we get

f: (T +T") ()] < i (7 ()l + HT’(uj)ll)2 =g +£13

j=1 j=1

< (€l +11€'112)* = (IT Nl + [ T7]]2)* < 0.
This shows that 7'+ 7" € HS(H) and
1T+ T2 < (1Tll2 + 11 77]]2-

Moreover, one easily checks that AT' € HS(H) and |[|A\T'||s = |A] ||T||2 for
every A € F. If | T||o = 0, then we get that ||T'(u;)|| = 0 for every j € N,
and this clearly implies that T = 0.

Hence, we have shown so far that HS(H) is a subspace of B(H) which
is closed under the adjoint operation, and that || - ||z is a norm on HS(H).

To show that [|T'|| < ||T||2, let x € H \ {0}. Set v; = mx and let
{v;};52 be an orthonormal basis for {x}*. Then {v;};cy is an orthonormal
basis for H, so we get

IT@)1* = = * 17 @)1 < llel® 2T @) = 1715 =]
Thus, [T < |[T]2- =
Next, we show that 7" € K(H). For each n € N, let P, denote the

orthogonal projection of H on Span ({u1,...u,}) and set T,, := T'P,. Then
we have - .

YN Ta(up)lP =D 1T (wy)||* < o0,

j=1 j=1

so T,, € HS(H) for each n € N. Hence,

© 1/2
I7 = Tull <7 =Tallz= (X IT()I?) " =0 asn—oo.
Jj=n+1
Since T,, € F(H) for each n, Theorem [5.1.6] gives that 7" € K(H). Hence,
HS(H) C K(H).
It only remains to show that F(H) C HS(H ), but we leave this as an
exercise. n
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5. On compact operators

Remark 5.2.9. For additional properties of HS(H), see Exercise

Remark 5.2.10. If H # {0} is finite-dimensional and B = {u;}}_, is an
orthonormal basis for H, then we get a norm on B(H) by setting

1Ty = (z 1) 2)

(which does not depend on the choice of orthonormal basis for H).
Letting A = [a; ;] denotes the matrix of 7" w.r.t. B, one readily checks

that
n 1/2
1Tl = (> lai?) ",

ij=1

i.e., ||T||2 coincides with the so-called Frobenius-norm of A.

Example 5.2.11. Set H = L?([a, ], A, 1), where A denotes the Lebesgue
measurable subsets of a closed interval [a,b] and p is the Lebesgue measure
on A. Let K : [a,b] X [a,b] — C be a continuous function and let Tx € B(H)
denote the associated integral operator on H, which is the extension of the
integral operator Ty : C'([a,b]) — C([a, b]) given by

[Tr(f)](s) = /ab K(s,t) dt for f € C([a,b]) and s € [a, b].

cf. Example 3.3.6| and Exercise [3.18] Then Tk is a Hilbert-Schmidt operator
on H (so Tk is compact by Proposition [5.2.8)).

To show this, we start by picking an orthonormal basis B = {[u;]},en for
H, where each u; is a continuous functions on [a, b]. (One may for example
construct B by applying the Gram-Schmidt orthonormalization process to
the monomials {#~' : j € N}). We note that B := {[%; ]} ey is then also an
orthonormal basis for H.

Let now s € [a,b] and let ks € C([a,b]) be given by ky(t) = K(s,t) for
all t € [a,b]. Note that for each j € N, we have

b

Tic(uy)](s) = [

a

K(s,t)u;(t) dt = /

[a,b]

k()5 (1) dp(t) = ([ka], [75)) -

Moreover, Parseval’s identity gives that

1= (3 [(k )

J=1
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5.2. On compact operators on Hilbert spaces

Thus, we obtain that

i!TKu] 5[ §\< @ = 1.

Now, using this and the Monotone Convergence Theorem, we get

ZHTK uj] H2—2 . [Tt )s) [ ts)

= [y (Z | meIo) ) ane

_/ H ”2 du )
= Jiaw (/[a,b]’ k(@) du()) du(s)
[ [ 1K 0 dt ds < o0,

which shows that T € HS(H) with ||Tx|l2 < [7 [ | K (s,1)? ds dt.

In the previous example, one may allow the kernel K to be discontinuous
and still obtain an Hilbert-Schmidt operator Tk, as long as K is square-
integrable w.r.t. to the product Lebesgue measure on |a, b] X [a, b]. However,
this requires a better knowledge of measure theory than the one we preassume
in these notes.
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5. On compact operators

5.3 The spectral theorem for a compact
self-adjoint operator

Throughout this section we let H denote a Hilbert space (over F) different
from {0}. Our main goal is to generalize the spectral theorem for symmetric
real matrices known from linear algebra, and prove that every compact
self-adjoint compact operator T" on H is diagonalizable in the sense that
there exists an orthonormal basis for H consisting of eigenvectors of 7.

We begin with a series of lemmas.

Lemma 5.3.1. Assume T € KK(H) has a nonzero eigenvalue X\ € F. Then
the associated eigenspace Ey := ker(T — A1) is finite-dimensional.

Proof. Assume for contraction that F is infinite-dimensional. We may then
find a sequence {v, },en of unit vectors in Fy which are pairwise orthogonal.
By compactness of T, {T'(v,,) }nen has a convergent subsequence. So we may
as well assume that {T(v,)}nen is convergent, hence that it is a Cauchy
sequence. However, we have that

1T (wn) = T(wa)I* = 1A vn — Avm|* = 2|A]* # 0

for all m,n € N. So {T'(v,,) }nen is not a Cauchy sequence, giving a contra-
diction. |

Lemma 5.3.2. Let T € B(H) be self-adjoint, and assume T has an eigen-
value A € F. Then X € R.

Moreover, if N is an eigenvalue of T distinct from X, then E\ L E\,
i.e., (x,y) =0 whenever x € Ey\ andy € Ey .

Proof. Let x € Ey. If ||z|| = 1, then we have
A= Xz,z) = Az,x) = (T'(z),z) € Wp CR,

so A € R. Moreover, assume that )\ is an eigenvalue of T distinct from A,
and let y € E). Then we have that A" € R, so

Ma,y) = (T(z),y) = (2, T(y)) = X (z,y) .
Since X # A, we get that (z,y) = 0. |

Lemma 5.3.3. Let T' € K(H) be self-adjoint. Then T has an eigenvalue
A € R such that |\ = ||T|.
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5.3. The spectral theorem for a compact self-adjoint operator

Proof. If T'= 0, then the assertion is trivial. So assume that 7" # 0. Using
Theorem we can find a sequence {z, },en of unit vectors in H such
that |(T'(z,), z,)| — ||T|| as n — oo. Since (T'(z,), z,) € R for every n, we
can assume (by passing to a subsequence and relabelling) that

(T'(zp),xn) — A as n — oo, where A = +||T|. (5.3.1)

Moreover, since T' is compact, we can also assume (by passing again to a
subsequence and relabelling) that 7'(z,) — y as n — oo for some y € H.
Note that the Cauchy-Schwarz inequality gives that

(T(x0), 20)| < |T(2n)l| for every n € N,

so, letting n — oo, we get that ||y|| > |[A| > 0, so y # 0.
Now, using that 7" is self-adjoint, A is real, ||z,|| = 1, and (5.3.1]), we get

IT(20) = Aznl® = (T (@n) = Ao, T(wn) — At )
= 1T (@a)[1* = 22 (T (20), ) + N0 ”
< HTH2 —2X(T(%n), Tp) + A2

=22 (A= (T(2n), 7))
— 0 as n — oo.

Thus, ||T(z,) — Az,|| = 0 as n — oo, and this gives that
ly = Aznll < |ly — T'(xn)|| + | T(2n) — Azy|| — 0 as n — oo.

Hence,
T(y) = Jim T(A\x,) = A Jim. T(x,) =Ny

Since y # 0, A is an eigenvalue of T, as we wanted to show.
[

We are now ready for the spectral theorem for a compact self-adjoint
operator T'. Intuitively, we could hope to be able to construct an orthonormal
basis of eigenvectors for 7' by using Lemma [5.3.3| repeatedly as follows. Start
by picking a unit eigenvector vy of T" associated to the eigenvalue A\g = +||7||.
Next, consider the restriction T} of T to {vg}*, and pick a unit eigenvector
vy of T7 associated to the eigenvalue A\; = £||T}||. Then continue this process
inductively. There are several technicalities involved in working out the
details of this approach. We will follow a more pedestrian route, which also
provides more information about 7.
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5. On compact operators

Theorem 5.3.4. Let T € K(H) be self-adjoint. Then there exists an
orthonormal basis € for H which consists of eigenvectors of T'.

More precisely, the following facts hold when T # 0:

(a)

(b)

(c)
(d)

The set L consisting of all nonzero eigenvalues of T is a nonempty,
countable subset of the interval [—||T||, ||T||}, containing ||T|| or —||T||.

If L is countably infinite, and {\, : k € N} is an enumeration of L,
then we have limy_,oo A\, = 0.

The eigenspace Ey = ker(T — \I) is finite-dimensional for each X\ € L.
For each \ € L, let £, be an orthonormal basis for Ey, and set

5,22 Ug)\

AEL

Then &' is an orthonormal basis for T(H) = ker(T)*, which is count-
able.

If ker(T) = {0}, set & = @; otherwise, let & be an orthonormal
basis for ker(T). Then € = & UE’ is an orthonormal basis for H
which consists of eigenvectors of T.

Let Py, denote the orthogonal projection of H on E\ for each \ € L.
Then PyPy = 0 whenever X\ #= X belong to L. Moreover, T has a
spectral decomposition

T => AP\ (w.r.t. operator norm), (5.3.2)

meaning that Ack

— T =% e AP\ if L is finite;
— limy oo |7 — X021 A P |l =0 if L is countably infinite

and {\g : k € N} is an enumeration of L, as in (b).

Proof. We can clearly assume that T # 0.

(a

): The set L is a subset of R by Lemma [5.3.2] which contains ||T’|| or

—||T|| by Lemma [5.3.3] If A € L, and v is an associated eigenvector in Hy,
we have

Al = [, 0)] = (T(v), )| < |IT1]

Thus, L € [T, [|T]]
To show that L is countable, let € > 0 and consider the subset of L given
by L. :={\ € L: |\ >¢€}. Then L. is finite.
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5.3. The spectral theorem for a compact self-adjoint operator

Indeed, assume L. is nonempty. Then for each A\ € L, we can pick
vy € Hj such that T'(vy) = Avy; for A, N € L., A # XN, we then have
Avy L Ny by Lemma [5.3.2) so we get

1T (va) = T(ox)lI* = | Ava = Now || = [A]P + [V]* > 227

Hence, if L. was infinite, we could find a sequence in H; which 7" maps into
a sequence with no convergent subsequence, contradicting the compactness
of T'. Thus, L. is finite.

Now, since L = U,eny Li/n, it follows that L is countable.

(b): Assume L is countably infinite and {\;, : k& € N} is an enumeration
of L. Let € > 0 be given. Then, as in (a), we get that the set K := {k € N :
|Ak| > €} is finite. So there exists N € N such that KX C {1,...,N}. For
every k > N + 1, we then have |\¢| < e. This shows that limy_,,, A\ = 0.

(¢): This is a consequence of Lemma [5.3.1}
(d): We first remark that since 7" is self-adjoint, we have

T(H)=T*(H) = (ker T)*.

Next, it follows from Lemma that £, L £y whenever A\ # X belong to
L. So it is clear that £ is an orthonormal set in H, which is countable since
each &, is finite and L is countable. Hence, £’ is a countable orthonormal
basis for M := Span (£’), and it remains only to show that M = ker(T)*,
i.e., that M+ = ker(T).

o ker(T) C M*: Assume y € ker(T'). Then for each A € L and v € &y,
we have

Av,y) = (T(v),y) = (v, T(y)) = (v,0) = 0.
Since \ # 0, this shows that y € (')t = M*.

o M+ Cker(T): It is easy to check that M is invariant under 7. Hence,
M+ is invariant under T* = T (cf. Exercise . We may therefore
consider the restriction S of T to M~+. Then S € K(M=): if not, then
there would exist a bounded sequence in M+, hence in H, which is
mapped by S, hence by T, to a sequence with no convergent subse-
quence, contradicting the compactness of T'. Moreover, S is self-adjoint
(this is an easy exercise).

Now, assume that S # 0. Then Lemma [5.3.3] gives that S has an
nonzero eigenvalue p. This implies that p is a nonzero eigenvalue of T,
i.e., 1 € L. But if v € M+ is an eigenvector for S associated with y,
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5. On compact operators

we then have that v € E, C M, so v € M N M+ = {0}, contradicting
that v # 0 (since v is an elgenvector)

This means that S has to be 0. Thus we get T'(y) = S(y) = 0 for all
y € M~*, as desired.

(e): If ker(T') = {0}, then we get from (d) that £ = £ is an orthonormal
basis for ker(T)* = {0}+ = H. If ker(T) # {0}, then we have & C ker(T')
and &' C ker(T)*, so it is clear that £ is an orthonormal set. Moreover, we
have that

H = Span (€).

Indeed, let x € H. Then we may write
T =Xy + Ty,

where )y € M = Span (€') and zy;1 € M+ = ker(T) = Span (&). So
we may choose {x,},eny C Span (£') and {yn}nen € Span (&) such that
lim,, .o ., = 23 and lim,, o Yy = x,.. This gives that

T}Lngo(xn+yn):xM+li =z.

Hence, « € Span (£). This shows that £ is an orthonormal basis for H.

(f): The first assertion follows readily from the fact that E) L E)y
whenever \ # X, cf. Lemma [5.3.2] Next, we consider the case where L is
countably infinite and {\; : £ € N} is an enumeration of L, leaving the
easier case where L is finite to the reader.

For each k € N, set ny := dim(E),) < oo, and let {vp1,..., vk, } be
an enumeration of £ . Then we have

:Ugg\k:{kalkGN,lélSnk}

keN

Consider x € H. Since T(x) € T(H) and & is an orthonormal basis for
T(H), we get from Corollary [4.2.11] that

m Nk

= %lj)noo Z Z T), Vgy) Vgt = nll_fgo DD {2, T(vky)) vy
k=1 1=1 k=1I=1
:nll_rpooz_: (ZSEUM Ukl) Z)\kp)\k

=1

Let now ¢ > 0. We have to show that there exists N € N such that
T —>5_; M Pl < eforalln>N.
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5.3. The spectral theorem for a compact self-adjoint operator

Using (b), we can choose N € N such that |[A\;] < ¢ for all £ > N.
Then for all n > N and all x € H, using continuity of the norm in H and
Pythagoras’ identity, we get

[-Xnp)@f =] © @l = X IR @I
k=1 k=n+1 k=n+1
<& Y IP @I <)
k=n-+1

and the assertion follows.
[ |

Remark 5.3.5. Let us say that an operator T € B(H) is diagonalizable if
there exists an orthonormal basis for H whose elements are eigenvectors
for T'. The spectral theorem says that 71" is diagonalizable if T" is compact
and self-adjoint. A more precise statement is as follows. We recall that
T € B(H) is called normal if T* commutes with 7.

Assume that T € K(H). If F =R, then T is diagonalizable if and only
if T is self-adjoint. On the other hand, if F = C, then T is diagonalizable if
and only if T is normal.

We leave the proof to the reader (cf. Exercises and [5.14)).

As a corollary of the spectral theorem, an analogue of the singular value
decomposition for matrices may be obtained for compact operators.

Indeed, let S € K(H), S # 0. Then T := 5*S is self-adjoint and
compact, and T # 0 (as || T|| = ||S*S|| = ||S||* # 0). Hence, the spectral
theorem gives that we may find a countable orthonormal basis {v;};en for
T(H) = ker(T)* = ker(S*S)* = ker(S)* consisting of eigenvectors for T'.
For each j € N, let p; denote the eigenvalue of 7" associated with v;. Note
that

Hj = <Mj %Uj> - <T(’Uj)7”j> = <S(“J')’S(”j)> = [S@)II* = 0

for every j € N. Since each pi; is nonzero, we get that all 11;’s are positive.
For each j € N, set

1
oj =/l >0 and wu;:=—S(v;).

gj
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The o;’s are called the singular values of S. For all j,k € N we have

(g, ut) = —— (S(07), S(ur)) = —— (T(vy), 03

00k 00k

:W<Uj,vk>:{1 if j = k.

00k 0 otherwise,

so {u; : 7 € N} is an orthonormal set in the range of S. Further, we have
the following decomposition of S:

S(x)=> oj{z,v;)u; forallze H. (5.3.3)
jEN
Indeed, let z € H and set M := T(H), so M+ = ker(S).
With z .=z — Py(z) € M+, we get that
z = Py(z)+z =Y (z,05)v; + z,
jEN
SO

S(x) = Y (x,v5) S(vy) + S(z) = Y 0 (x,v;) uy,

JEN JEN

as asserted in (5.3.3)).

It readily follows that {u; : j € N} is an orthonormal basis for S(H).
Finally we remark that the spectral theorem also gives that o; = /ft; — 0
as j — oo when N is countably infinite, and that

S| = ||TH1/2 =max{p;:j€ N}l/2 =max{o;:j€ N}.

5.4 Application: The Fredholm Alternative

A useful application of linear algebra, and one of its original motivation,
is the study of systems of linear equations, i.e., of equations of the type
Az =b, where A € M,,5,(F), b € F™ and the (unknown) vector x belongs
to F™. More generally, one may consider equations of the form

T(v)=w (5.4.1)

where V, W are vector spaces (over F), T" € L(V,W), w € W and the
(unknown) vector  belongs to V. Whether such an equation is consistent,
i.e., has some solution(s), relies on whether w lies in the range of T, in which
case it follows readily that the solution set of is given by

vo + ker(T) := {vo +u|ue ker(T)} (5.4.2)
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5.4. Application: The Fredholm Alternative

where vy € V' is any vector satisfying (5.4.1)), i.e., such that T'(vy) = w.

In the rest of this section, we consider the case where V =W = H is a
Hilbert space (# {0}), and T' € B(H). We can then exploit the relationship
between the fundamental subspaces of T" and T*, cf. Proposition [4.3.§|

For example, using that T(H) = ker(T*)*, we get that if T has closed
range (i.e., T'(H) is closed), then will be consistent if and only if w
is orthogonal to ker(7).

In particular, if 7" has closed range and ker(7*) = {0} (i.e., T* is one-to-
one), then 7" must be surjective, hence is consistent for all w € H.
Similarly, if 7* has closed range and ker(7') = {0}, then it follows that 7*
is surjective, so the equation 7%(v") = w’ is consistent for all w’ € H.

On the other hand, if it happens that T' is surjective, then we get that
ker(T*) = {0}, hence that the equation 7%(v') = w’ will have either no
solution or a unique solution. Similarly, if 7™ is surjective, then ker(7T™) =
{0}, and will have either no solution or a unique solution.

A problem is that many bounded operators do not have a closed range.
Moreover, in general, it may be a difficult task to decide whether the range
of some given T' € B(H) is closed or not. However, we note that if " € B(H)
has finite-rank, then it has closed range (as T'(H) is finite-dimensional).
In the case where H is finite-dimensional, much more can be said. The
following terminology will be useful.

Definition 5.4.1. An operator F' € B(H) is said to satisfy the Fredholm
alternative if one of the following two (mutually exclusive) situations occurs:

(a) ker(F') = ker(F*) = {0}, and the equations F(v) = w, F*(v') = u’
have both a unique solution for all w,w’ € H;

(b) 1 < dim(ker(F)) = dim(ker(F™)) < oo, the equation F(v) = w is
consistent if and only if w € ker(F*)*, and the equation F*(v') = w’
is consistent if and only if w’ € ker(F)*.

Example 5.4.2. Assume that H is finite-dimensional and F' € B(H), i.e.,
F € L(H). Then F satisfies the Fredholm alternative.

The crux is that we have dim(ker(F*)) = dim(ker(F')). To show this,
we use the formula

dim(M) + dim(M™*) = dim(H),

which is easily verified for any subspace M of H, and the dimension formula
for F'. We get that

dim(ker(F*)) = dim(F(H)*) = dim(H) — dim(F(H)) = dim(ker(F)).
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5. On compact operators

Combining this fact with our previous observations in this section, it is

straightforward to deduce that either (a) or (b) in Definition holds.

An important class of bounded operators satisfying the Fredholm alter-
native consists of operators of the form F' =T — ul, where T is a compact
operator on H and p € F\ {0}. In the special case where T' = T is an inte-
gral operator, cf. Example [5.2.11] an equation of the form (Tx — pI)(f) = g,
e, Tx(f) — uf = g, is often called a Fredholm integral equation of the
second kind[l

Consider T' € K(H) and p € F\ {0}. Then it can be shown that the
following facts hold:

(i) T — pI has closed range;
(i) dim(ker(T" — ul)) = dim(ker((T" — pl)*)) < oo.

Since T* is compact, we also get that T — il = (T — pl)* has closed
range. Using these properties, and the general principles outlined before,
one readily arrives at the conclusion that F' =T — pl satisfies the Fredholm
alternative, as asserted above. We don’t have time in this course to prove
that (i) and (ii) hold. Instead, we will illustrate how the spectral theorem
for compact self-adjoint operators can be applied to give a direct proof of
the following:

Theorem 5.4.3. Assume T € K(H) is self-adjoint and pn € F\ {0}. Then
F =T — ul satisfies the Fredholm alternative.

Proof. Assume first that p is not an eigenvalue of T, i.e., ker(T'— ul) = {0}.
Then the spectral theorem implies that the equation (7" — pl)(z) = y
has a unique solution for all y € H. (You are asked to check this in
Exercise ) Thus, FF = T — ul is surjective, and this implies that
ker(F*) = ker(T' — ul) = {0}, i.e., 71 is not an eigenvalue of T'. Arguing as
above, we get that the equation (7' — ul)(z') = v/, i.e., (T — pl)*(2') =/
has a unique solution for all 4’ € H. This shows that (a) in Definition m
holds in this case.

Next, assume that y is an eigenvalue of T, i.e., ker(T'— puI) # {0}. Then
i€ R, so F* = F. Moreover, as u # 0, we have that T' # 0, and the spectral
theorem tells us that 1 < dim(ker(F")) = dim(ker(7"— pul)) < oo. Hence,
to show that (b) in Definition holds, it remains only to prove that the

!Such equations, and Fredholm integral equations of the first kind (i.e., equations of
the form Tk (f) = g), were studied by I. Fredholm at the beginning of the 20th century.
They arise in some practical problems in signal theory and in physics.
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equation F'(z) = y is consistent if and only if y € ker(F)*. This means that
we have to prove that the equation

T(x)—pr =y (5.4.3)

is consistent if and only if (y,z) = 0 for all z € E,, := ker(T — pl).

To prove this, let & = {u;};e; be an enumeration of the orthonormal
basis for T(H) obtained in the spectral theorem for T', and let u; € R\ {0}
denote the eigenvalue of T corresponding to each ;.

Since H is the direct sum of ker(7") and ker(T)* = T(H), we may write
y € H as

Yy =yo + D (y,uy) u,
jeJ
where yy denote the orthogonal projection of y onto ker(T"). Likewise, we
may assume that the (unknown) vector x in equation is written as

$:$0+ZCjUj,
jeJ

where g € ker(T) and {c;};e; € (*(J) are to be determined, if possible.
Plugging this into equation ([5.4.3), we get the equivalent equation

—pxo + > (5 — p) ¢ u; = yo + > (Y, uj) uy.
jeJ jeJ

Clearly, we can set xo := (—1/u) yo, and equation (5.4.3)) is then consistent
if and only if the sequence {¢;};c; € (*(J) can be chosen so that

(j —p)c; = (y,u;) forall jeJ (5.4.4)
Now, as p is a nonzero eigenvalue of T, we have that © = ;. for some k € J.
Let wj,,...,u;, denote the vectors in £ giving an orthonormal basis for
By = By 165 ¢ (s - ju}, we have iy # g, 50
1
Cj 1= <y7 U >
’ Mg — 1 !

will satisfy ([5.4.4]) for every such j.
On the other hand, if j € {ji,...,Jn}, we have p; — p = 0. Hence,

will be satisfied for j = ji,..., j, if and only if we have (y,u;) =0
for j = j1,...,jn, e, if and only if (y,z) = 0 for all z € E,. Moreover,
when this condition holds, we can choose ¢;,, ..., ¢, freely and, regardless
of this choice, the constructed sequence {c;},c; is easily seen to belong to
(*(J) (exercise: check this!), meaning that the associated vector z gives a
solution to (5.4.3]). Thus, we have proved the desired equivalence. [ |
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5.5 Exercises
Exercise 5.1. Let X, Y, Z denote normed spaces over F. Consider \ € IF,
T, 7" e B(X,Y)and S € B(Y,Z),so ST € B(X, Z).

a) Show that AT+ 7" € K(X,Y)if T, T € K(X,Y).

b) Show that ST € K(X,Z) if T € K(X,Y).

c¢) Show that ST € K(X, Z) if S € K(Y, Z).

d) Set £(X) = K£(X, X). Deduce that

STeK(X)if SeB(X)and T € K(X), orif S € K(X) and T € B(X).

Exercise 5.2. Let X = (?(N), A € (*(N), and M, € B(X) be the
associated multiplication operator, cf. Example

Show that A\ € ¢y(N) if M), is compact.
(It therefore follows that M) is compact if and only if A € ¢(N).)

Exercise 5.3. Let X be a normed space, H be a Hilbert space, and let
T € K(X, H). Show that T'(X) is separable.

Exercise 5.4. Let H be an infinite-dimensional Hilbert space and let
T € K(H). Show that <T(un),un> — 0 as n — oo whenever {u,},en
is an orthonormal sequence in H.

Exercise 5.5. Let H be a Hilbert space and let P € B(H) be a projection
(i.e. P2 = P). Show that P has finite-rank if (and only if) P is compact.

Exercise 5.6. Let H be a separable Hilbert space, H # {0}.
a) Show that F(H) C HS(H), and that F(H) is dense in HS(H)

w.r.t. || - e
b) Assume that 7' € HS(H) and S € B(H). Show that both ST and
TS belong to HS(H), and that we have
STz < STz, NTSI < (T2 15]] -

c¢) Let B = {u;}jc; be an orthonormal basis for H, where J = {1,...,n}
if dim(H) =n < oo, while J = N otherwise.
For T, T" € HS(H), set

(T.77), = > (T(uy), T'(u;))-

jedJ

Show that this gives a well-defined inner product on HS(H ), and check that
the associated norm is the Hilbert-Schmidt norm || - ||.
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d) Show that HS(H) is complete w.r.t. || - [|2, so that HS(H) is a Hilbert
space w.r.t. the inner product from c).

Exercise 5.7. Let H = L?(R, A, 1) where A denote all Lebesgue measurable
subsets of R and p is the Lebesgue measure. For which f € £ is the
multiplication operator My € B(H) compact ?

Exercise 5.8. Let H be a Hilbert space, T' € K(H) and A € F, A # 0.
Assume that there exists a sequence {x, },en of unit vectors in H such that
IT(z,) — Axy|| — 0 as n — oo. Show that A is an eigenvalue of T

Exercise 5.9. Let H be a Hilbert space, and let T € K(H) be self-adjoint.
Assume p € F)p # 0 is not an eigenvalue of T', i.e. T — ply is injective.

Let y € H, let & = {u;},e; be an enumeration of the orthonormal basis
for M = T(H) obtained in the spectral theorem for 7", and let p; # 0 denote
the eigenvalue of 1" corresponding to u;.

a) Show that the series

Z <y7 uj> u;

jeJ Hj —

=

converges to some h € H.
b) Set z :=y — Py(y) and z := h — iz Show that (T'— uly)(x) = y.

¢) Deduce that T'— uly is surjective (hence that it is bijective).

Exercise 5.10. Consider H = L*([—7,7]) (with respect to the normalized
Lebesgue measure). Let g € C(|—m,7|) be periodic, i.e. satisfies that
g(—m) = g(m), and extend g to a periodic function g on R with period 27.
Define G : [—m, 7] X [=m, 7| = C by G(s,t) = g(s —t).

a) Check that G is continuous, so that the associated integral operator
Te belongs to HS(H) (hence is compact).

¢) Decide when T is self-adjoint.

b) Let k € Z and recall that ey (t) = e for all t € [—m, 71]. Check that
er is an eigenvector for the operator Tg. Deduce that Ty is diagonalizable
(with respect to {ex}rez)-

- 1/2
¢) Show that |Tgls = llglls = (& /7, 9(0)? dt) "
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Exercise 5.11. Consider H = L*([0,1]) (with respect to Lebesgue measure)
and the integral operator Tx € B(H) associated with K (s,t) := min(s,t)
for all (s, %) in [0, 1] x [0, 1], cf. Example [5.2.11}

a) Explain why T is self-adjoint and compact. Then check that the set
U = {[u,] : n € N}, where

1
U (t) := V/2 sin ((n - i)ﬂt) forall t € [0,1], n € N,

is an orthonormal set of eigenvectors for T.

b) It can be shown that ¢ is an orthonormal basis for H. Is it possible
to deduce this from a) and the spectral theorem for Tk 7

Exercise 5.12. Let S, T € B(H).

a) Assume there exists an orthonormal basis for H whose elements are
eigenvectors for both S and 7. Check that S commutes with 7.

b) Assume S and T" are compact and self-adjoint, and that S commutes
with T". Show that there exists an orthonormal basis for H whose elements
are eigenvectors for both S and T

Hint: Start by considering an eigenvalue \ of T" and study how S acts
on the corresponding eigenspace Ef .

Exercise 5.13. Assume H is a Hilbert space over R, and let 7" € B(H).

a) Assume that 7 is diagonalizable (as defined in Remark [5.3.5)). Check
that T is self-adjoint.

b) Let T" be compact. Deduce that T is diagonalizable if and only if 7" is

self-adjoint.

Exercise 5.14. Assume H is a Hilbert space over C, and let T € B(H).

a) Assume that 7 is diagonalizable (as defined in Remark [5.3.5)). Check
that 7" is normal.

b) Show that 7" is normal if and only if Re(7") and Im(7") commutes
with each other.

c¢) Let T' be compact. Show that T is diagonalizable if and only if T is
normal.

Hint: The implication (=) follows from a). For (<), use b) and Exercise

EIb).
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Exercise 5.15. Let H be a separable Hilbert space with a countably infinite
orthonormal basis B = {v;};en. Let {f;};en be a bounded sequence in F
and let D € B(H) denote the associated diagonal operator (w.r.t. B).

a) Show that D is compact if and only if lim; ,., p; = 0.

(Note: If you have looked at Example and solved Exercise [5.2] this
should not be difficult).

b) Show that D is Hilbert-Schmidt if and only if {p;}jen € £*(N), in

1/2
which case we have || Dl = ( i1 |Mj|2> / .

Exercise 5.16. Let H be a separable Hilbert space of infinite dimension
and let T € K(H) be selfadjoint, T" # 0. Assume that you have found an
orthonormal basis B = {v;};jen for H consisting of eigenvectors for 7', and
let 1; € R denote the eigenvalue of T' corresponding to each v;.

a) Show that the sequence {y,};en is bounded, hence that 7' is the
diagonal operator (w.r.t. B) associated with this sequence. Deduce from the
previous exercise that lim;_,., p; = 0.

b) As in the spectral theorem, set
L :={X € R| A is anonzero eigenvalue of T'}.

Set also
L:={X € R | \is an eigenvalue of T},

so L = L\ {0}. Show the following assertions:

() L={n;|jeN}yand L={u|jeN,u#0}.

(ii) If X € L and Ny := {j € N| y; = A}, then N, is a finite subset of N
and {v; | j € N,} is an o.n.b. for E,.

(iii) If p; # 0 for all j € N, then ker(7") = {0}.
(iv) If No :== {j € N | p; = 0} is nonempty, then {v; | j € Ny} is an
o.n.b. for ker(7).

Exercise 5.17. Let H = L?([0,1]) (with usual Lebesgue measure) and let
T = My be the self-adjoint operator in B(H) given by multiplication with
the function f(t) = ¢ on [0, 1], cf. Example [£.4.4]

Show that T'(H) is not closed, i.e., that 7" does not have closed range.
Show also that 7' is not compact.
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Exercise 5.18. Let H = (*(N), let A € £>°(N) be given by A\(n) = % for

all n € N, and let T' = M, € B(H) denote the associated multiplication
operator. Note that T" is compact, as follows from Example [5.1.

Show that T(H) = H and T'(H) # H, so T does not have closed range.

Exercise 5.19. Let H be a Hilbert space and T' € B(H). Let us say that T’
is bounded from below if there exists some a > 0 such that « ||z|| < ||T(z)]|
for all z € H. For example, T is bounded from below when 7" is an isometry.

Show that if T" is bounded from below, then T" has closed range.

Exercise 5.20. Finish the proof of Theorem by checking that the
sequence {c;}jes constructed in the final paragraph (under the assumption
that y is orthogonal to E,,) belongs to ¢*(.J).
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