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CHAPTER 1

Preliminaries

In this chapter we fix some notation and give a review of some of the concepts
and results that we will need. These are usually covered in undergraduate
courses in real analysis, and the reader may consult the book of T. Lindstrøm,
Spaces: an introduction to real analysis (AMS 2017), or any other standard
book in real analysis, for details and proofs.

1.1 Normed spaces
Throughout these notes F will denote either R (the real numbers) or C (the
complex numbers). If X, Y are sets, we let X × Y denote their Cartesian
product, i.e.,

X × Y =
{

(x, y) : x ∈ X, y ∈ Y
}
.

A metric space (X, d) is called complete when every Cauchy sequence in
(X, d) is convergent.

Definition 1.1.1. A normed space (X, ‖ · ‖) over F is a vector space X over
F which is equipped with a norm ‖ · ‖. We recall that X is then a metric
space with respect to the metric given by d(x, y) = ‖x − y‖ for x, y ∈ X.
We will only consider normed spaces over F in these notes, and we will often
just write X to denote such a normed space, assuming tacitly that some
norm on X is given.

When x ∈ X and r > 0, we let BX
r (x) denote the closed ball in X with

center in x and radius r, that is,
BX
r (x) :=

{
y ∈ X : ‖x− y‖ ≤ r

}
.

When there is no danger of confusion, we just write Br(x) instead of BX
r (x).

We also set
X1 := BX

1 (0), i.e., X1 =
{
x ∈ X : ‖x‖ ≤ 1

}
.



1. Preliminaries

Definition 1.1.2. If (X, ‖ · ‖) is a normed space, and ‖ · ‖′ is also a norm
on X, we say that ‖ · ‖ and ‖ · ‖′ are equivalent when there exist positive
real numbers K and L such that

‖x‖′ ≤ K ‖x‖ and ‖x‖ ≤ L ‖x‖′ for all x ∈ X.

When ‖ · ‖ and ‖ · ‖′ are equivalent, it is clear that a sequence {xn}∞n=1
in X converges to x ∈ X w.r.t. ‖ · ‖ if and only if it converges to x ∈ X
w.r.t. ‖ · ‖′. The following proposition implies that for many purposes the
choice of a norm in a finite-dimensional space can be made arbitrarily.

Proposition 1.1.3. If X is a finite-dimensional vector space over F, then
all norms on X are equivalent.

Definition 1.1.4. Assume {xn}∞n=1 is a sequence in a normed space (X, ‖·‖).
We say that the series ∑∞n=1 xn is convergent in X if there is some x ∈ X
such that ‖x−∑N

n=1 xn‖ → 0 as N →∞, in which case we say that ∑∞n=1 xn
converges to x (w.r.t. ‖ · ‖), and also write x = ∑∞

n=1 xn.

Definition 1.1.5. When a normed space (X, ‖ · ‖) is complete with respect
to the associated metric given by

d(x, y) = ‖x− y‖

for all x, y ∈ X, we say that X is a Banach space (over F).

To check that a normed space is a Banach space, the following result is
often useful:

Theorem 1.1.6. Let (X, ‖ · ‖) be a normed space. Then X is a Banach
space if and only if every absolutely convergent series in X is convergent in
X, that is, if and only if the following condition holds :

Whenever ∑∞n=1 xn is a series in X such that ∑∞n=1 ‖xn‖ < ∞, then∑∞
n=1 xn is convergent in X.

Remark 1.1.7. It is good to know that if X is a normed space, then we
can always form its completion; this means that whenever needed, we can
assume that X sits as a dense subspace of a Banach space X̃ where the
norm of X̃ extends the norm on X. An elegant way to construct X̃ (as
an application of the so-called Hahn-Banach theorem) is covered in more
advanced courses on linear analysis.
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1.2. Inner product spaces

1.2 Inner product spaces
Definition 1.2.1. An inner product space over F is a vector space X over
F which is equipped with an inner product 〈·, ·〉 : X ×X → F. This means
that for x, y, z ∈ X and λ ∈ F we have:

i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,

ii) 〈λx, y〉 = λ〈x, y〉,

iii) 〈y, x〉 = 〈x, y〉,

iv) 〈x, x〉 ≥ 0,

v) 〈x, x〉 = 0 if and only if x = 0.

Remark 1.2.2. a) Properties i) and ii) say that the inner product is linear
in the first variable.

b) When F = R, property iii) says that the inner product is symmetric,
i.e., 〈y, x〉 = 〈x, y〉; combining i) and ii) with iii), we then get that the inner
product is also linear in the second variable.

c) When F = C, we get that the inner product is conjugate-linear in the
second variable; this means that we have

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 and 〈x, λy〉 = λ〈x, y〉.

Some authors prefer to use inner products that are linear in the second
variable and conjugate-linear in the first variable. This is common in
textbooks related to physics or mathematical physics. As one can go from
one type to the other by setting 〈x, y〉′ := 〈y, x〉, it is mainly a matter of
taste which convention one chooses to use.

In the sequel, by an inner product space, we will always mean an inner
product space over F. An inequality of fundamental importance is:

Theorem 1.2.3 (The Cauchy-Schwarz inequality). Let X be an inner prod-
uct space. For x ∈ X set ‖x‖ := 〈x, x〉1/2. Then we have

|〈x, y〉| ≤ ‖x‖ ‖y‖ (1.2.1)

for all x, y ∈ X, with equality if and only if x and y are linearly dependent.

If X is an inner product space, then using the Cauchy-Schwarz inequality,
one deduces that ‖x‖ = 〈x, x〉1/2 gives a norm on X. Thus, X is then a
normed space, and its norm is easily seen to satisfy the parallellogram law,
that is, for all x, y ∈ X we have

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2. (1.2.2)

3



1. Preliminaries

Definition 1.2.4. Let X be an inner product space. If x, y ∈ X, then x
and y are said to be orthogonal (to each other) when 〈x, y〉 = 0. A subset
S ⊂ X is called orthogonal if x and y are orthogonal for all x, y ∈ S such
that x 6= y. Moreover, S is called orthonormal if S is orthogonal and ‖x‖ = 1
for all x ∈ S.

Proposition 1.2.5 (Pythagoras). Assume {x1, . . . , xn} is a finite orthogo-
nal subset of an inner product space X. Then we have

‖x1 + · · ·+ xn‖2 = ‖x1‖2 + · · ·+ ‖xn‖2.

Proposition 1.2.6. Assume S = {u1, . . . , un} is a finite orthonormal subset
of an inner product space X. Then S is linearly independent. Moreover, if
u ∈ Span{u1, . . . , un}, i.e., if u is a linear combination of the vectors in S,
then

u =
n∑
j=1
〈u, uj〉uj and ‖u‖2 =

n∑
j=1
|〈u, uj〉|2.

Proposition 1.2.7 (Bessel’s inequality). Assume S = {uj : j ∈ J} is a
countable orthonormal subset of an inner product space X. Then for any
x ∈ X we have ∑

j∈J
|〈x, uj〉|2 ≤ ‖x‖2.

Definition 1.2.8. An inner product space X (over F) is called an Hilbert
space (over F) when X is complete with respect to the norm associated with
its inner product.

Remark 1.2.9. Assume X is an inner product space. Considering X as a
normed space, we may form its completion X̃ (cf. Remark 1.1.7), and extend
the inner product on X to an inner product on X̃ as follows: if y, y′ ∈ X̃,
then we can pick sequences {xn}∞n=1, {x′n}∞n=1 in X converging respectively
to y and y′; after checking that {〈xn, x′n〉}∞n=1 is a Cauchy sequence in F,
hence is convergent, we may set

〈y, y′〉 := lim
n→∞
〈xn, x′n〉.

It is then a somewhat tedious exercise to verify that this gives a well-defined
inner product on X̃ which extends the one on X. This means that whenever
needed, we may assume that X sits as a dense subspace of a Hilbert space
X̃ (called the completion of X) where the inner product on X̃ extends the
inner product on X.

4



1.3. Linear operators

1.3 Linear operators
Definition 1.3.1. Assume that X and Y are both vectors spaces over F.
Then a map T : X → Y is called a linear operator if we have

T (λ1 x1 + λ2 x2) = λ1 T (x1) + λ2 T (x2)

for all λ1, λ2 ∈ F and all x1, x2 ∈ X.

We denote by L(X, Y ) the set of all linear operators from X to Y . One
readily checks that L(X, Y ) is a vector space over F with respect to the
operations defined by

(S + T )(x) = S(x) + T (x), (λT )(x) = λT (x)

for S, T ∈ L(X, Y ), λ ∈ F and x ∈ X. We also set L(X) := L(X,X). We
let IX ∈ L(X) denote the identity map from X into itself, that is, IX(x) = x
for all x ∈ X. We just I instead of IX if no confusion is possible.

Definition 1.3.2. Assume that X and Y are both normed spaces over F.
Then a linear operator T : X → Y is called bounded if there exists some
real number M > 0 such that

‖T (x)‖ ≤ M ‖x‖ ∀x ∈ X,

or, equivalently, such that ‖T (x)‖ ≤ M for all x ∈ X1.

Proposition 1.3.3. Assume that X and Y are both normed spaces over F
and let T ∈ L(X, Y ). Then the following conditions are equivalent:

(a) T is bounded.

(b) T is uniformly continuous on X.

(c) T is continuous on X.

(d) T is continuous at x = 0.

We denote the set of all bounded linear operators from X to Y by B(X, Y ).
We follow tradition here and use the qualifying adjective “bounded” , although
we could equally well have used “continuous” instead. One readily checks
that B(X, Y ) is a subspace of L(X, Y ). We also set B(X) = B(X,X).
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1. Preliminaries

Proposition 1.3.4. Assume that X and Y are both normed spaces over F.
For T ∈ B(X, Y ), set

‖T‖ := sup
{
‖T (x)‖ : x ∈ X1

}
< ∞.

Then the map T → ‖T‖ is a norm on B(X, Y ), called the operator norm.
Moreover, we have

‖T‖ = sup
{
‖T (x)‖ : x ∈ X, ‖x‖ = 1

}
(when X 6= {0}),

and
‖T (x)‖ ≤ ‖T‖ ‖x‖ ∀x ∈ X.

Theorem 1.3.5. Assume that X is a normed space over F, while Y is a
Banach space. Then B(X, Y ) is Banach space. In particular, B(X) is a
Banach space whenever X is a Banach space.

An immediate consequence of this theorem is that B(X,F) is a Banach
space whenever X is normed space over F. Elements of L(X,F) are called
linear functionals. Thus B(X,F) consists of the bounded linear functionals
on X; it is usually called the dual space of X and denoted by X∗ in many
books, or by X] in others.

Definition 1.3.6. A map T : X → Y between two vector spaces over F is
called a (vector space) isomorphism if T ∈ L(X, Y ) and T is bijective (that
is, T is both one-to-one and onto). It is then easy to check that the inverse
map of T , T−1 : Y → X, is linear, i.e., T−1 ∈ L(Y,X).

Definition 1.3.7. Assume that X and Y are normed spaces over F. A map
T : X → Y is called an isomorphism of normed spaces if T is a (vector
space) isomorphism such that both T and T−1 are bounded.

Definition 1.3.8. Assume that X is a normed space and T ∈ B(X). Then
we say that T is invertible in B(X) if T is an isomorphism of normed spaces.
In other words, an operator T ∈ B(X) is invertible in B(X) if T is bijective
and T−1 ∈ B(X).

Proposition 1.3.9. Let X, Y, Z be normed spaces over F, and let T ∈
B(X, Y ), S ∈ B(Y, Z). Set ST := S ◦ T : X → Z. Then ST ∈ B(X,Z)
and

‖ST‖ ≤ ‖S‖ ‖T‖ .

Corollary 1.3.10. Assume that X is a normed space and S ∈ B(X). For
each n ∈ N, let Sn := S · · ·S denote the product of S with itself n times,
then Sn ∈ B(X) and ‖Sn‖ ≤ ‖S‖n. Note that by setting S0 = IX , this
formula also holds when n = 0.
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1.3. Linear operators

Theorem 1.3.11. Assume that X is a Banach space and S ∈ B(X) is such
that ‖S‖ < 1. Then I − S is invertible in B(X) and

(I − S)−1 =
∞∑
n=0

Sn (convergence w.r.t. operator norm).

Moreover, ‖(I − S)−1‖ ≤ 1
1−‖S‖ .

7





CHAPTER 2

On Lp-spaces

An important class of Banach spaces over F associated with measure spaces
are the so-called Lp-spaces, where 1 ≤ p ≤ ∞. We will assume that F = C,
and just mention that the case where F = R may be handled in a similar
way. Our presentation is somewhat more detailed than the one given in
section 7.7 and 7.9 of Lindstrøm’s book.

2.1 The case 1 ≤ p <∞
Let (X,A, µ) be a measure space and set

M =M(X,A) :=
{
f : X → C : f is A-measurable

}
,

which we know is a vector space (with its natural operations). We will
be interested in subspaces ofM associated with any p ∈ [1,∞]. We first
consider the case 1 ≤ p <∞. For each f ∈M we note that the function |f |p
is non-negative and belongs toM (since the function z → |z|p is continuous
on C), so we can set

‖f‖p :=
( ∫

X
|f |p dµ

)1/p
∈ [0,∞]

(using the convention that ∞1/p =∞). Moreover, we set

Lp(X,A, µ) := {f ∈M : ‖f‖p <∞}.

We will just write Lp when there is no danger of confusion, and note that
some authors write Lp(µ). It is then clear that L1 consists of all the complex
functions on X which are integrable (w.r.t. µ). When A = P(X) and
µ is the counting measure on A, it is common to write `p(X) instead of
Lp(X,A, µ).



2. On Lp-spaces

It is not difficult to see that Lp is a subspace of M. For example,
closedness under addition follows readily from the inequality |z + w|p ≤
2p(|z|p + |w|p), which is easily seen to hold for all z, w ∈ C. On the other
hand, it is not true in general that ‖ · ‖p is a norm on Lp. The reason is that
for f ∈ Lp, we have

‖f‖p = 0 ⇔
∫
X
|f |p dµ = 0 ⇔ |f |p = 0 µ-a.e. ⇔ f = 0 µ-a.e.

As we will soon see, ‖ · ‖p is a seminorm on Lp in the following sense:

Definition 2.1.1. A seminorm on a vector space V (over F) is a function
v → ‖v‖ from V into [0,∞) satisfying ‖λ v‖ = |λ| ‖v‖ and the triangle
inequality ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V and λ ∈ F.

We note that a seminorm ‖ · ‖ is a norm if it also satisfies that ‖v‖ = 0
only if v = 0. Using the triangle inequality for | · | on C, one readily deduces
that ‖ · ‖1 gives a seminorm on L1. To handle the case p > 1 we will need:

Theorem 2.1.2 (Hölder’s inequality). Assume p ∈ (1,∞) and let q ∈ (1,∞)
denote p’s conjugate exponent given by q = p

p−1 , so that 1
p

+ 1
q

= 1.
Let f ∈ Lp and g ∈ Lq. Then fg ∈ L1 and

‖fg‖1 =
∫
X
|fg| dµ ≤ ‖f‖p ‖g‖q . (2.1.1)

Proof. We first note that if a, b are nonnegative real numbers, then we have

ab ≤ a p

p
+ b q

q
. (2.1.2)

A geometric way to prove this inequality (called Young’s inequality) is to
observe that ap

p
is the area given

∫ a
0 x

p−1 dx, while bq

q
is the area given by∫ b

0 y
q−1 dy. As q − 1 = 1/(p − 1), we have y = xp−1 ⇔ x = yq−1 when

x, y ≥ 0. By considering the graph of y = x p−1 and the rectangle [0, a]×[0, b]
in the xy-plane, one realizes that (2.1.2) must be true.

Next, we note that we may assume that ‖f‖p = ‖g‖q = 1. Indeed,
assume that (2.1.1) holds whenever ‖f‖p = ‖g‖q = 1, and consider f ∈ Lp
and g ∈ Lq. If ‖f‖p = 0 or ‖g‖q = 0, then both sides of (2.1.1) are equal to
zero. On the other hand, if ‖f‖p and ‖g‖q are both nonzero, then we may
use that (2.1.1) holds for the functions f/‖f‖p and g/‖g‖q, and deduce that
it holds in the general case.
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2.1. The case 1 ≤ p <∞

Hence, assume that ‖f‖p = ‖g‖q = 1. Then, using (2.1.2) with a = |f(x)|
and b = |g(x)| for each x ∈ X, and linearity of the integral, we get∫

X
|fg| dµ =

∫
X
|f(x)| |g(x)| dµ(x)

≤ 1
p

∫
X
|f(x)|p dµ(x) + 1

q

∫
X
|g(x)|q dµ(x)

= 1
p
‖f‖pp + 1

q
‖g‖qq

= 1
p

+ 1
q

= 1

= ‖f‖p ‖g‖q ,

as desired. �

Corollary 2.1.3. Let p ∈ [1,∞). Then ‖ · ‖p is a seminorm on Lp. In
particular, for all f, g ∈ Lp, we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p (Minkowski’s inequality) (2.1.3)

Proof. As already mentioned, the case p = 1 is straightforward. So assume
p ∈ (1,∞). The reader should have no problem to see that we have
‖λ f‖p = |λ| ‖f‖p for all λ ∈ C and all f ∈ Lp. Next, let f, g ∈ Lp, and let
q be p’s conjugate exponent. As (p− 1)q = p and p/q = p− 1, we have

‖ |f + g|p−1‖q =
( ∫

X
|f + g|(p−1)q dµ

)1/q
=
( ∫

X
|f + g|p dµ

)1/q

= ‖f + g‖p/qp = ‖f + g‖p−1
p .

Since f + g ∈ Lp, this shows that |f + g|p−1 ∈ Lq; moreover, using Hölder’s
inequality (at the 4th step), we get

‖f + g‖pp =
∫
X
|f + g|p dµ =

∫
X
|f + g| |f + g|p−1 dµ

≤
∫
X
|f | |f + g|p−1 dµ+

∫
X
|g| |f + g|p−1 dµ

≤ ‖f‖p ‖ |f + g|p−1‖q + ‖g‖p ‖ |f + g|p−1‖q
= (‖f‖p + ‖g‖p) ‖|f + g|p−1‖q
= (‖f‖p + ‖g‖p) ‖f + g‖p−1

p ,

and Minkowski’s inequality clearly follows. �
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2. On Lp-spaces

Let {fn} be a sequence in Lp and f ∈ Lp. We note that it may happen
that fn → f pointwise on X while ‖fn − f‖p 6→ 0 as n→∞. For example
one may let X = R, A = BR, µ = Lebesgue measure on BR, and consider
the sequence given by fn = χ[n,n+1] for each n ∈ N: it converges pointwise
to 0 on R as n→∞, and satisfies ‖fn‖p = 1 for all n ∈ N.

The following Lp-version of Lebesgue’s Dominated Convergence Theorem
gives conditions ensuring that a pointwise limit is also convergent w.r.t. ‖·‖p.

Proposition 2.1.4. Let p ∈ [1,∞) and {fn}n∈N ⊆ Lp. Assume that there
exist some g ∈ Lp such that |fn| ≤ g µ-a.e. for all n ∈ N, and some f ∈M
such that fn → f pointwise µ-a.e. on X.
Then f ∈ Lp and ‖fn − f‖p → 0 as n→∞.

Proof. The assumptions imply that |fn|p ≤ gp µ-a.e. for all n ∈ N and that
|fn|p → |f |p pointwise µ-a.e. on X. It follows that we |f |p ≤ gp µ-a.e., so∫

X
|f |p dµ ≤

∫
X
gp dµ <∞ ,

hence f ∈ Lp. Further, we get

|fn − f |p ≤
(
|fn|+ |f |

)p
≤ (2 g)p = 2p gp µ-a.e.,

and |fn − f |p → 0 pointwise µ-a.e. on X. Since 2p gp ∈ L1, we can apply
Lebesgue’s Dominated Convergence Theorem and get

lim
n→∞

∫
X
|fn − f |p dµ =

∫
X

0 dµ = 0,

which gives that ‖fn − f‖p → 0 as n→∞, as desired. �

Let p ∈ [1,∞). It follows from Corollary 2.1.3 that we obtain a normed
space Lp by identifying functions in Lp that agree µ-a.e. To achieve this in
a formal way, we first define a relation ∼ on Lp by setting

f ∼ g ⇔ f = g µ-a.e.

for f, g ∈ Lp. In other words, f ∼ g ⇔ ‖f−g‖p = 0. It is almost immediate
that ∼ is an equivalence relation, and we will denote the equivalence class
of f ∈ Lp by [f ], that is, we set

[f ] :=
{
g ∈ Lp : f ∼ g

}
.

It is then a routine matter to check that

Lp = Lp(X,A, µ) :=
{

[f ] : f ∈ Lp
}

12



2.1. The case 1 ≤ p <∞

becomes a normed space w.r.t.

[f ] + [g] := [f + g] , λ [f ] := [λ f ] , ‖ [f ] ‖p := ‖f‖p
where f, g ∈ Lp and λ ∈ C. (The reader may consult Exercise 2.1 for a more
general statement.) Moreover, we have:

Theorem 2.1.5. Let p ∈ [1,∞). Then (Lp, ‖ · ‖p) is a Banach space.

Proof. Let {[fn]}n∈N ⊆ Lp be such that ∑∞n=1 ‖[fn]‖p < ∞, i.e., such that
S := ∑∞

n=1 ‖fn‖p <∞. According to Theorem 1.1.6 we have to show that
the series ∑∞n=1[fn] is convergent in Lp. It suffices to show that there exists
some F ∈ Lp such that limN→∞ ‖

∑N
n=1 fn − F‖p = 0, because this will give

that

lim
N→∞

‖
N∑
n=1

[fn]− [F ]‖p = lim
N→∞

‖
[ N∑
n=1

fn − F
]
‖p = lim

N→∞
‖

N∑
n=1

fn − F‖p = 0 ,

thus showing that ∑∞n=1[fn] converges to [F ] in Lp.
For each N ∈ N, set gN := ∑N

n=1 |fn|. Also, let g : X → [0,∞] be given
by

g(x) :=
∞∑
n=1
|fn(x)| for all x ∈ X.

Clearly, the sequence {gpN} of A-measurable nonnegative functions is nonde-
creasing, and it converges pointwise to the A-measurable function gp on X.
Further, using Minkowski’s inequality, we get

‖gN‖p ≤
N∑
n=1
‖ |fn| ‖p =

N∑
n=1
‖fn‖p ≤ S

for all N ∈ N. Hence, using the Monotone Convergence Theorem, we get∫
X
gp dµ = lim

N→∞

∫
X
gpN dµ = lim

N→∞
‖gN‖pp ≤ Sp < ∞ .

Since gp ≥ 0, it follows from [L; Exercise 7.5.6] that gp is finite µ-a.e., hence
that g is finite µ-a.e. This means that the series ∑∞n=1 fn(x) is absolutely
convergent for every x belonging to some E ∈ A such that µ(Ec) = 0. We
may therefore define F ∈M by

F (x) =

∑∞
n=1 fn(x) if x ∈ E,

0 if x ∈ Ec.

With FN := ∑N
n=1 fn we then have |FN | ≤ gN ≤ g ∈ Lp for every N ∈ N,

and FN → F pointwise µ-a.e. on X as N → ∞. Proposition 2.1.4 gives
now that F ∈ Lp and limN→∞ ‖FN − F‖p = 0, as we wanted to show. �
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2.2 The case p =∞
We now consider the case p = ∞. Let F(X) denote the vector space
consisting of all complex functions on X (with its natural operations).
By an algebra of complex functions on X, we will mean a subspace of
F(X) which is also closed under pointwise multiplication. For example,
M =M(X,A) is an algebra of complex functions on X. Another natural
algebra is the one consisting of those functions in M which are bounded.
We will actually be interested in a slightly larger algebra.

Definition 2.2.1. A function f ∈ M is said to be essentially bounded
(w.r.t. µ) if there exists some real number M > 0 such that

|f | ≤ M µ-a.e.,

in which case we set ‖f‖∞ := inf
{
M > 0 : |f | ≤ M µ-a.e.

}
.

Example 2.2.2. a) Asume g ∈M is bounded and set ‖g‖u := supx∈X |g(x)|.
Then g is essentially bounded (w.r.t. µ), and we have

‖g‖∞ ≤ ‖g‖u .

Indeed, we have µ
(
{x ∈ X : |g(x)| > ‖g‖u}

)
= µ(∅) = 0. This gives that

|g| ≤ ‖g‖u µ-a.e., and both assertions follow readily.
We note that it may happen that ‖g‖∞ < ‖g‖u. For example, consider

the Borel function g on X = R given by g = χ{0}; letting µ be the Lebsgue
measure on BR, we get

‖g‖∞ = 0 < 1 = ‖g‖u .

b) Consider X = [0,∞), A = the Borel subsets of X and µ = the Lebesgue
measure on A. Let f ∈M be given by

f(x) = eix +
∞∑
n=1

nχ{2nπ}(x), x ≥ 0 .

Then f(2kπ) = k+1 for every k ∈ N, so f is unbounded. On the other hand,
f is essentially bounded (w.r.t. µ), with ‖f‖∞ = 1, since µ

(
|f |−1((M,∞))

)
is equal to 0 if M ≥ 1 and to ∞ if 0 < M < 1.

The following useful observation may seem obvious, but it requires a
proof.

14
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Lemma 2.2.3. Let f ∈M be essentially bounded (w.r.t. µ). Then we have

|f | ≤ ‖f‖∞ µ-a.e. (2.2.1)

Proof. Set B := {x ∈ X : |f(x)| > ‖f‖∞} ∈ A and assume (for contradic-
tion) that µ(B) > 0. For each n ∈ N, set

Bn :=
{
x ∈ X : |f(x)| > ‖f‖∞ + 1

n

}
∈ A .

Clearly, Bn ⊆ Bn+1 for every n, and B = ⋃∞
n=1 Bn, so we have

lim
n→∞

µ(Bn) = µ(B) > 0 .

Hence there must exist at least one N ∈ N such that µ(BN) > 0. Now, by
definition of ‖f‖∞, we can findM > 0 such that ‖f‖∞ ≤M < ‖f‖∞+ 1

N
and

|f | ≤M µ-a.e. But this implies that |f | ≤ ‖f‖∞+ 1
N
µ-a.e., i.e., µ(BN ) = 0,

and we have reached a contradiction. �

Using Lemma 2.2.3, it is straightforward to verify that the set L∞ =
L∞(X,A, µ) consisting of all functions inM that are essentially bounded
(w.r.t. µ) is an algebra of complex functions on X (cf. Exercise 2.9). Another
application is the following Hölder-type inequality:

Proposition 2.2.4. Let q ∈ [1,∞), f ∈ L∞ and g ∈ Lq. Then fg ∈ Lq
and

‖fg‖q ≤ ‖f‖∞ ‖g‖q .

Proof. Using Lemma 2.2.3 we get that |fg|q = |f |q |g|q ≤ ‖f‖q∞ |g|q µ-a.e.
It follows that ∫

X
|fg|q dµ ≤ ‖f‖q∞

∫
X
|g|q dµ <∞ .

Hence fg ∈ Lq. Moreover, taking the q-th root, we obtain the desired
inequality. �

Convergence in L∞ with respect to ‖ · ‖∞ is closely related to uniform
convergence:

Proposition 2.2.5. Let {fn}n∈N ⊆ L∞ and f ∈ L∞. Then we have that
‖fn − f‖∞ → 0 as n→∞ if and only if there exists some E ∈ A such that
µ(Ec) = 0 and fn → f uniformly on E.

15
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Proof. Assume ‖fn − f‖∞ → 0 as n→∞. For each n ∈ N, set

Fn := {x ∈ X : |fn(x)− f(x)| > ‖fn − f‖∞} ∈ A.

Since fn−f ∈ L∞, we have µ(Fn) = 0 for each n. Hence, F := ∪n∈N Fn ∈ A
and µ(F ) = 0.

Set now E := F c ∈ A. Then µ(Ec) = 0 and

E = {x ∈ X : |fn(x)− f(x)| ≤ ‖fn − f‖∞ for all n ∈ N} .

It is then obvious that fn → f uniformly on E. The proof of the reverse im-
plication goes along the same lines, and we leave it as an exercise (cf. Exercise
2.11). �

As with the Lp-spaces for 1 ≤ p <∞, an annoying fact is that in general
‖·‖∞ is only a seminorm on L∞. To get a norm we have to identify functions
that agree µ-a.e. Thus, for each f ∈ L∞ we set [f ] = {g ∈ L∞ : g = f µ-a.e.}.
Then

L∞ = L∞(X,A, µ) :=
{

[f ] : f ∈ L∞
}

becomes a vector space w.r.t. the operations given by [f ] + [g] := [f + g],
λ[f ] := [λf ] (where f, g ∈ L∞ and λ ∈ C), and ‖[f ]‖∞ := ‖f‖∞ gives a
norm on L∞ (cf. Exercise 2.1).

Theorem 2.2.6. (L∞, ‖ · ‖∞) is a Banach space.

Proof. We have to show that L∞ is complete w.r.t. the metric associated
with ‖ · ‖∞.

Let {[fn]}n∈N be a Cauchy sequence in L∞. So each fn belongs to L∞
and for any given ε > 0, there exists some N ∈ N such that

m,n ≥ N ⇒ ‖ [fm]− [fn] ‖∞ < ε ,

that is,
m,n ≥ N ⇒ ‖ fm − fn ‖∞ < ε . (2.2.2)

For each m,n ∈ N, set

Fm,n :=
{
x ∈ X : |fm(x)− fn(x)| > ‖fm − fn‖∞

}
.

Then Fm,n ∈ A and µ(Fm,n) = 0 for all m,n ∈ N (because fm − fn ∈ L∞).

Next, set F := ⋃
m,n∈N Fm,n ∈ A and E := F c ∈ A.

16
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Note that µ(Ec) = µ(F ) = 0 (since 0 ≤ µ(F ) ≤ ∑
m,n∈N µ(Fm,n) = 0).

Moreover,
E =

⋂
m,n∈N

(Fm,n)c =
⋂

m,n∈N

{
x ∈ X : |fm(x)− fn(x)| ≤ ‖fm − fn‖∞

}
=
{
x ∈ X : |fm(x)− fn(x)| ≤ ‖fm − fn‖∞ for all m,n ∈ N

}
.

Let now ε > 0 be given, and choose N ∈ N such that (2.2.2) holds.
Then for all x ∈ E and all m,n ≥ N , we have

|fm(x)− fn(x)| ≤ ‖ fn − fm ‖∞ < ε . (2.2.3)
It follows that {fn(x)}n∈N is a Cauchy sequence in C for each x ∈ E. Since
C is complete, this implies that {fn(x)}n∈N is convergent for each x ∈ E,
hence that limn→∞ fn(x) = g(x) for some g(x) ∈ C for each x ∈ E. Thereby
we obtain a function g : E → C, which is AE-measurable since g is the
pointwise limit of the restriction of the fn’s to E. (Here, AE denotes the
σ-algebra of all sets in A which are contained in E).

We can now extend g to an A-measurable function f : X → C by setting
f(x) = g(x) if x ∈ E, and f(x) = 0 otherwise.

Again, let ε > 0 be given and choose N as above. Then, for all x ∈ E
and all m ∈ N such that m ≥ N , we get from (2.2.3) that

|fm(x)− f(x)| = |fm(x)− g(x)| = lim
n→∞

|fm(x)− fn(x)| ≤ ε .

This implies that {fm}m∈N converges uniformly to f on E.
Moreover, set D := E ∩ {x ∈ X : |fN(x)| ≤ ‖fN‖∞} ∈ A. Then we

have
|f(x)| = |f(x)− fN(x) + fN(x)| ≤ |f(x)− fN(x)|+ |fN(x)| ≤ ε+ ‖fN‖∞
for all x ∈ D. As

0 ≤ µ(Dc) ≤ µ(F ) + µ
(
{x ∈ X : |fN(x)| > ‖fN‖∞}

)
= 0 ,

we have µ(Dc) = 0, so
|f | ≤ ε+ ‖fN‖∞ µ-a.e.

This shows that f ∈ L∞. Using Proposition 2.2.5, we can now conclude
that ‖fm − f‖∞ → 0 as m→∞. Thus

‖ [fm]− [f ] ‖∞ = ‖fm − f‖∞ → 0 as m→∞ .

This means that {[fm]}j∈N converges to [f ] in L∞. We have thereby shown
that every Cauchy sequence in L∞ is convergent and the proof is finished.

�
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2.3 Exercises
Exercise 2.1. Let V be a vector space (over F) and let ‖ · ‖ denote a
seminorm on V . Define a relation ∼ on V by setting

v ∼ w ⇔ ‖v − w‖ = 0

for v, w ∈ V .
a) Check that ∼ is an equivalence relation.

Denote the equivalence class of v ∈ V by [v], that is,

[v] :=
{
w ∈ V : v ∼ w

}
,

and set Ṽ :=
{

[v] : v ∈ V
}
. Moreover, for v, w ∈ V , and λ ∈ F, set

[v] + [w] := [v + w] , λ [v] := [λ v] , ‖ [v] ‖ := ‖v‖ .

b) Show that these operations on Ṽ are well-defined, that is, show
that if v, v′, w, w′ ∈ V are such that v′ ∼ v, w′ ∼ w, and λ ∈ C, then
(v′ + w′) ∼ (v + w), λv′ ∼ λv and ‖v′‖ = ‖v‖.

c) Verify that (Ṽ , ‖ · ‖) is a normed space. (Check at least three of the
axioms.)

In the following exercises, unless otherwise specified, (X,A, µ) denotes a
measure space andM denotes the space of A-measurable complex functions
on X.

Exercise 2.2. Assume that X = [1,∞), A = the Borel subsets of X and µ
is the Lebesgue measure on A. Let f ∈M be given by

f(x) = 1
x

for all x ≥ 1,

and let 1 ≤ p < ∞. Show that f ∈ Lp(X,A, µ) if and only if p > 1, and
compute ‖f‖p in this case.

Exercise 2.3. Assume that X = R, A = the Borel subsets of X and µ is
the Lebesgue measure on A. Let f ∈M be given by

f(x) = e−x
2 for all x ∈ R.

Show that f ∈ Lp(X,A, µ) for all p ∈ [1,∞) and compute ‖f‖p. (You are
allowed to use that limN→∞

∫N
−N e

−t2 dt =
√
π without proof.)

18



2.3. Exercises

Exercise 2.4. Assume that X = (0, 1], A = the Borel subsets of X and µ
is the Lebesgue measure on A. Let f ∈M be given by

f(x) = 1√
x

for all x ∈ (0, 1],

and let 1 ≤ p <∞.
a) Show that f ∈ Lp(X,A, µ) if and only if p < 2, and compute ‖f‖p in

this case.
b) Let ν be the measure on A given by

ν(A) =
∫
A
x dµ(x) for all A ∈ A .

Show that f ∈ Lp(X,A, ν) if and only if p < 4, and compute ‖f‖p in
this case.

Exercise 2.5. Assume that X = [1,∞), A = the Borel subsets of X and µ
is the Lebesgue measure on A. For each n ∈ N, define fn ∈M by

fn(x) = n

nx1/3 + 1 for all x ≥ 1.

a) Show that fn ∈ Lp for all n ∈ N whenever 3 < p <∞.
b) Assume that 3 < p <∞. Decide whether the sequence {[fn]}n∈N is

convergent in Lp and find its limit if it converges.

Exercise 2.6. Let p ∈ [1,∞). Let E denote the space of simple functions in
M and E0 denote the subspace of E spanned by {χA : A ∈ A, µ(A) <∞}.

a) Show that E0 = E ∩ Lp.
b) Let f ∈ Lp. Show that there exists a sequence {gn} in E0 such that

‖f − gn‖p → 0 as n→∞. Deduce that the space

[E0] :=
{

[g] : g ∈ E0
}

is dense in Lp with respect to ‖ · ‖p.

Exercise 2.7. Let a, b ∈ R, a < b, A denote the Lebesgue measurable
subsets of X = [a, b] and µ denote the Lebesgue measure on A. Finally, let
C([a, b]) denote the space of all continuous complex functions on [a, b]. Let
p ∈ [1,∞).

a) Let A ∈ A and δ > 0. Show that there exists some k ∈ C([a, b]) such
that ‖χA − k‖p < δ.

b) Use a) and Exercise 2.6 to show that the space
{

[f ] : f ∈ C([a, b])
}
is

dense in Lp([a, b],A, µ) with respect to ‖ · ‖p.
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Exercise 2.8. Assume that X = R, A = the Lebesgue measurable subsets
of R and µ is the Lebesgue measure on A. Say that a function f : R→ C
has compact support if f = 0 outside some closed, bounded interval. Let
Cc(R) denote the space of all continuous complex functions on R which have
compact support. Let p ∈ [1,∞).

Show that the space {[f ] : f ∈ Cc(R)} is dense in Lp with respect to
‖ · ‖p.

Exercise 2.9. Check that ‖ · ‖∞ is a seminorm on L∞ (so that ‖ · ‖∞ gives
a norm on L∞). Check also that L∞ is an algebra of functions on X and
that we have ‖fg‖∞ ≤ ‖f‖∞ ‖g‖∞ for all f, g ∈ L∞.

Exercise 2.10. Let f ∈M. Show that f ∈ L∞ if and only if there exists
a bounded function g ∈M such that f = g µ-a.e., in which case we have

‖f‖∞ = inf{ ‖g‖u : g ∈M is bounded and g = f µ-a.e.}.

Exercise 2.11. Finish the proof of Proposition 2.2.5.

Exercise 2.12. Let 1 ≤ p ≤ r <∞ and X be a nonempty set. Show that

` p(X) ⊆ ` r(X) ⊆ `∞(X) .

Exercise 2.13. Let p ∈ [1,∞) and assume that (X,A, µ) is finite, that is,
µ(X) <∞.

a) Show that L∞ ⊆ Lp.
b) Consider 1 ≤ p ≤ r <∞ and let f ∈ Lr. Show that f ∈ Lp and

‖f‖p ≤ µ(X)
1
p
− 1

r ‖f‖r .

Hint: Use Hölder’s inequality in a suitable way.
Note that this shows that Lr ⊆ Lp. In particular, we have L∞ ⊆ L2 ⊆ L1.
c) Consider the Lebesgue measure on the Borel subsets of R. Give an

example of a function which is in L2, but not in L1 Give also an example of
a function which is in L∞, but not in L2.

Exercise 2.14. Let E denote the space of simple functions inM and let f ∈
L∞. Show that there exists a sequence {hn} in E such that ‖f − hn‖∞ → 0
as n→∞. Deduce that the space [E ] := {[h] : h ∈ E} is dense in L∞ with
respect to ‖ · ‖∞.
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CHAPTER 3

More on normed spaces and
linear operators

3.1 Aspects of finite dimensionality
Unless otherwise specified, we always assume that the space Fn, n ∈ N, is
equipped with the Euclidean norm ‖ · ‖2 given by

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

)1/2
for x = (x1, . . . , xn) ∈ Fn,

and with the metric induced by this norm. As we recalled in Section 1.1,
all norms on a finite-dimensional vector space are equivalent. The usual
way to prove this is to consider first Fn and show that any other norm on
Fn is equivalent to ‖ · ‖2. A crucial fact in the proof is that a subset of
Fn is compact (w.r.t. the metric associated with ‖ · ‖2) if and only if it is
closed and bounded. It will be useful for us to know that this property,
sometimes called the Heine-Borel property, holds in any finite-dimensional
normed space. We will need the following lemma.

Lemma 3.1.1. Let X and Y be finite-dimensional normed spaces. Assume
that X and Y are isomorphic as vector spaces and let T ∈ L(X, Y ) be an
isomorphism. Then T is an isomorphism of normed spaces.

Proof. We have to show that T and T−1 are bounded. To avoid confusion,
we let ‖ · ‖ and ‖ · ‖′ denote the respective norms on X and Y . For x ∈ X
set

‖x‖T := ‖T (x)‖′ .
Clearly, the map x→ ‖x‖T is a seminorm on X; in fact, it is a norm since

‖x‖T = 0 ⇔ ‖T (x)‖′ = 0 ⇔ T (x) = 0 ⇔ x = 0,
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the last equivalence being a consequence of the injectivity of T . Since X is
finite-dimensional, ‖ · ‖T is equivalent to ‖ · ‖. In particular, this means that
there exists some C > 0 such that

‖T (x)‖′ = ‖x‖T ≤ C ‖x‖ for all x ∈ X,

which shows that T is bounded. Similarly, by considering the norm on
Y given by ‖y‖T−1 := ‖T−1(y)‖ for y ∈ Y , one deduces that T−1 is also
bounded. �

Proposition 3.1.2. Let X be a finite-dimensional normed space. Then a
subset K of X is compact (w.r.t. the metric induced by the given norm) if
and only if K is closed and bounded.

Proof. Since a compact subset of a metric space is always closed and bounded,
we only have to show the reverse implication. So let K ⊆ X be closed and
bounded. We must show that K is compact. If X = {0}, this is obviously
true, so we may assume that m := dim(X) ≥ 1. Let then T : X → Fm
denote the coordinate map w.r.t. some basis for X. Lemma 3.1.1 gives
that T is an isomorphism of normed spaces. Set K ′ := T (K) ⊆ Fm. Then
K ′ is bounded (since T is bounded). Moreover, K ′ is closed. Indeed, as
K ′ = (T−1)−1(K), this follows from the continuity of T−1. By the Heine-
Borel property of Fm, we can conclude that K ′ is compact. As K = T−1(K ′)
and T−1 is continuous, this implies that K is compact, as desired. �

Since the unit ball X1 of a normed space is closed and bounded we get:

Corollary 3.1.3. The unit ball X1 of a finite-dimensional normed space X
is compact.

We note that if X is an infinite-dimensional normed space, then X1 is
not compact. (See Exercises 3.1 and 3.2.) In particular, this implies that an
infinite-dimensional normed space never has the Heine-Borel property.

Another property which is automatically satisfied for a finite-dimensional
normed space is completeness:

Proposition 3.1.4. Let X be a finite-dimensional normed space. Then X
is a Banach space.

Proof. We may clearly assume that X 6= {0}. To show that X is complete,
we let {xn}n∈N be a Cauchy sequence in X and have to prove that it is
convergent. As in the proof of Proposition 3.1.2, we can pick an isomorphism
of normed spaces T : X → Fm, where m = dim(X). For each n ∈ N, set
yn := T (xn). Since ‖yn − yk‖2 = ‖T (xn − xk)‖2 ≤ ‖T‖ ‖xn − xk‖ for all
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k, n ∈ N, we see that {yn}n∈N is a Cauchy sequence in Fm. Since Fm is
complete, there exists y ∈ Fm such that ‖yn − y‖2 → 0 as n → ∞. Set
x := T−1(y) ∈ X. Then we get

‖xn − x‖ = ‖T−1(yn − y)‖ ≤ ‖T−1‖ ‖yn − y‖2 → 0 as n→∞.

Thus, {xn}n∈N is convergent, as desired. �

Corollary 3.1.5. Assume M is a finite-dimensional subspace of a normed
space X. Then M is closed in X.

Proof. Assume {xn}n∈N ⊆ M converges to x ∈ X. We have to show that
x ∈ M . As M is complete by Proposition 3.1.4, and {xn}n∈N is a Cauchy
sequence in M , it follows that {xn}n∈N converges to some y ∈M . Thus we
get that x = limn→∞ xn = y ∈M . �

Finite dimensionality has also some impact on linear operators.

Example 3.1.6. Let m,n ∈ N and let T ∈ L(Fn,Fm). Then T is bounded.
Indeed, let A = [ai,j] denote the standard matrix of T . Then we have
T (x) = (F1(x), . . . , Fn(x)), where Fi(x) := ∑n

j=1 ai,j xj for each i = 1, . . . ,m
and x = (x1, . . . , xn) ∈ Fn. Since each component Fi is clearly a continuous
function from Fn to F, we get that T is continuous, and therefore bounded.

More generally, we have:

Proposition 3.1.7. Let X and Y be normed spaces and let T ∈ L(X, Y ).
Assume that X is finite-dimensional. Then T is bounded.

Proof. By replacing Y with T (X) if necessary, we may assume that Y is
finite-dimensional. Moreover, we may also assume that both X and Y are
different from {0}. Set n = dim(X),m = dim(Y ), and let C : X → Fn,
D : Y → Fm be isomomorphims, which are then necessarily isomorphisms of
normed spaces by Lemma 3.1.1. The composition T ′ := D ◦ T ◦C−1 is then
a linear map from Fn to Fm, hence it is bounded by the previous example.
It follows that T = D−1 ◦ T ′ ◦ C, being the composition of bounded maps,
is bounded. �

Note that the above result is not true in general if we instead assume that
Y is finite-dimensional, even in the case where Y = F : a linear functional
T : X → F may be unbounded when X is an infinite-dimensional normed
space. For an example, see Exercise 3.3.
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Definition 3.1.8. A linear operator T : X → Y between two vector spaces
X and Y is said to have finite-rank if the range of T is finite-dimensional,
i.e., if dim(T (X)) <∞.

It is obvious that a linear functional on a normed space has always
finite-rank. As such a linear functional can be unbounded, we get that
a finite-rank linear operator T between normed spaces is not necessarily
bounded; in fact, it can be shown that such an operator T is bounded if and
only if ker(T ) is closed. Bounded finite-rank operators have the following
interesting property:

Proposition 3.1.9. Let X and Y be normed spaces over F, and assume that
T ∈ B(X, Y ) has finite-rank. Then, for any given bounded sequence {xn}n∈N
in X, we have that the sequence {T (xn)}n∈N has a convergent subsequence
in Y .

Proof. Assume {xn}n∈N ⊆ X satisfies ‖xn‖ ≤ M for all n ∈ N for some
M > 0. Then we have

‖T (xn)‖ ≤ ‖T‖ ‖xn‖ ≤ ‖T‖M

for all n ∈ N. Now, the ball B := {y ∈ Y : ‖y‖ ≤ ‖T‖M} is closed in Y .
Considering T (X) as a normed space w.r.t. to the norm it inherits from
Y , we get that the set K := T (X) ∩ B is a closed and bounded subset of
T (X). Since T (X) is finite-dimensional (by assumption), it follows from
Proposition 3.1.2 that K is compact in T (X). As {T (xn)}n∈N is a sequence
in K, we can therefore conclude that it has a convergent subsequence. �

An operator T ∈ L(X, Y ) satisfying the property described in the
conclusion of Proposition 3.1.9 is said to be compact. We will have a closer
look at this important class of operators in Chapter 5.
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3.2. Direct sums and projections

3.2 Direct sums and projections
We first discuss the concepts of direct sums and projections in a purely
linear algebraic setting. Let X be a vector space over F, and let M1 and M2
be subspaces of X. We define the sum of M1 and M2 as the subset of X
given by

M1 +M2 :=
{
x1 + x2 : x1 ∈M1, x2 ∈M2

}
.

It is straightforward to verify that it the least subspace of X containing
both M1 and M2.

Definition 3.2.1. We will say that X is the (internal) algebraic direct sum
of M1 and M2, and write X = M1 +̇M2 , when

X = M1 +M2 and M1 ∩M2 = {0} .

Obviously, we have X = M1 +̇M2 if and only if X = M2 +̇M1 .

We first make a simple, but fundamental, observation:

Lemma 3.2.2. The following two conditions are equivalent:

(i) X = M1 +̇M2 ;

(ii) every x ∈ X can be written in a unique way as x = x1 + x2 with
x1 ∈M1 and x2 ∈M2 .

Proof. Assume (i) holds and let x ∈ X. Then we have x = x1 + x2 for some
x1 ∈M1, x2 ∈M2. If we also have x = x′1 + x′2 for some x′1 ∈M1, x

′
2 ∈M2,

then we get
x1 − x′1 = x′2 − x2 ∈ M1 ∩M2 .

Since M1 ∩M2 = {0}, this implies that x′1 = x1 and x′2 = x2. Thus (ii)
holds.

Conversely, assume (ii) holds. It then obvious that X = M1 + M2.
Consider y ∈ M1 ∩M2. Then we have y = y + 0 with y ∈ M1, 0 ∈ M2,
and y = 0 + y with 0 ∈ M1, y ∈ M2. By uniqueness, we get y = 0. Thus,
M1 ∩M2 = {0}, so (i) holds. �

Remark 3.2.3. If V1 and V2 are vector spaces over F, then one may form
their direct product V1 × V2, which is often called the (external) algebraic
direct sum of V1 and V2. (This concept is presumably well-known; the
definition is recalled in Exercise 3.5). In the case of an (internal) algebraic
direct sum X = M1 +̇M2, it can easily be verified that X is isomorphic to
M1 ×M2.
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3. More on normed spaces and linear operators

Example 3.2.4. a) Let X be the space of all n×n matrices over F, and let
M1 (resp. M2) denote the subspace of X consisting of all upper (resp. lower)
triangular matrices in X. Then it is obvious that we have X = M1 +M2 ;
but X is not the algebraic direct sum of M1 and M2, since M1 ∩M2 consists
of all the diagonal matrices.

b) Let X be the space of all n×n matrices over R, and let M1 (resp. M2)
denote the subspace of symmetric (resp. skew-symmetric) matrices in X.
(We recall that A ∈ X is called skew-symmetric when At = −A.) Then we
have X = M1 +̇M2. Indeed, if A ∈ X, then A = A1 + A2, where

A1 := 1
2(A+ At) ∈M1 and A2 := 1

2(A− At) ∈M2 .

Moreover, if A ∈M1 ∩M2, then we have A = At = −A, so A = 0.

There is a tight connection between projection operators and directs
sums.

Definition 3.2.5. Let X be a vector space. An operator P ∈ L(X) is
called a projection when P is an idempotent map, that is, when it satisfies
P 2 = P .

One readily checks that P ∈ L(X) is a projection if and only if I − P is
a projection. We leave it as an exercise to check the following:

Proposition 3.2.6. Assume X = M1 +̇M2, and define P1, P2 : X → X by

P1(x) := x1 , P2(x) := x2 ,

whenever x = x1 + x2 with x1 ∈M1 and x2 ∈M2.
Then P1, P2 are projections in L(X) such that

P1 + P2 = I, P1P2 = P2P1 = 0,

P1(X) = M1 = ker(P2) and P2(X) = M2 = ker(P1).

The map P1 is called the projection (from X) on M1 along M2, while the
map P2 is called the projection (from X) on M2 along M1.

Example 3.2.7. Consider X = R2. The most familiar direct sum decom-
position of R2 is of course

R2 = M1 +̇M2
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3.2. Direct sums and projections

where M1 = {(s, 0) : s ∈ R} and M2 = {(0, t) : t ∈ R}, in which case P1 and
P2 are the usual coordinate maps, i.e.,

P1((s, t)) = (s, 0) and P2((s, t)) = (0, t) .

However, there are infinitely ways of writing R2 as a direct sum, even if
we fix M1 to be the first axis: indeed, we can then let M2 be any line
through the origin which is different from M1. For example, if we choose
M2 = {(t, t) : t ∈ R}, then M1 ∩M2 = {(0, 0)}, and for any (u, v) ∈ R2 we
have

(u, v) = (u− v, 0) + (v, v) , with (u− v, 0) ∈M1 and (v, v) ∈M2.

Thus, in this case, we get that the projection maps P1, P2 : R2 → R2 are
given by P1((u, v)) = (u− v, 0) and P2((u, v)) = (v, v) for all (u, v) ∈ R2.

A converse to Proposition 3.2.6 is the following:

Proposition 3.2.8. Assume P ∈ L(X) is a projection. Then we have

X = P (X) +̇ ker(P ).

Moreover, we have P (X) = ker(I − P ), ker(P ) = (I − P )(X), and P is the
projection from X on P (X) along ker(P ).

Proof. Let x ∈ X. Note that

x = P (x) + (x− P (x)) . (3.2.1)

Since
P
(
x− P (x)

)
= P (x)− P 2(x) = 0 ,

that is, (x− P (x)) ∈ ker(P ), this shows that X = P (X) + ker(P ).
Next, assume that x ∈ P (X)∩ ker(P ). Thus we have x = P (y) for some

y ∈ X and P (x) = 0. This gives that

x = P (y) = P 2(y) = P (P (y)) = P (x) = 0 .

Hence, P (X) ∩ ker(P ) = {0}, so X = P (X) +̇ ker(P ).
If we now set M1 := P (X) and M2 := ker(P ), then, using the notation

from Proposition 3.2.6, we get from equation (3.2.1) that P1 = P and
P2 = I − P , so the last assertions follow readily from this proposition. �
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Remark 3.2.9. If M1 is a subspace of a vector space X, then it can be
shown that M1 can be algebraically complemented, i.e., that there exists
a subspace M2 of X such that X = M1 +̇M2. (In fact, if {0} 6= M1 6= X,
then there exist infinitely many such subspaces, which are all isomorphic to
each other.) When X is infinite-dimensional, the proof requires the axiom
of choice, in the form of Zorn’s lemma, as explained in more advanced
textbooks.

We now turn our attention to normed spaces.

Definition 3.2.10. Assume that X is a normed space over F, and let M1
and M2 be subspaces of X. We will say that X is the (internal) direct sum
of M1 and M2, and write

X = M1 ⊕M2 ,

when X = M1 +̇M2 and both M1 and M2 are closed in X.

Proposition 3.2.11. Let X be a normed space and assume P ∈ L(X) is a
projection which is bounded (so P ∈ B(X)). Then we have

X = P (X)⊕ ker(P ) .

Proof. We know from Proposition 3.2.8 that X = P (X) +̇ ker(P ), so it
remains only to check that P (X) and ker(P ) are closed in X. Since ker(P ) =
P−1({0}) and P is continuous, ker(P ) is closed. Moreover, since P (X) =
ker(I − P ) and I − P is continuous, we also get that P (X) is closed. �

Example 3.2.12. Let V1, V2 be normed spaces over F. As is readily verified
(if not already known), the direct product V := V1 × V2 becomes a normed
space with respect to the norm given by

‖(v1, v2)‖ := ‖v1‖+ ‖v2‖ .

Moreover, with Ṽ1 := {(v1, 0) : v1 ∈ V1} and Ṽ2 := {(0, v2) : v2 ∈ V2}, we
have V = Ṽ1 +̇ Ṽ2 (cf. Exercise 3.5). Let P1 ∈ L(V ) denote the projection
from V on Ṽ1 along Ṽ2. Then

‖P1((v1, v2))‖ = ‖(v1, 0)‖ = ‖v1‖+ ‖0‖ = ‖v1‖ ≤ ‖(v1, v2)‖

for all (v1, v2) ∈ V , so P1 is bounded. Thus, Proposition 3.2.11 gives that
V = P1(V )⊕ ker(P1). As P1(V ) = Ṽ1 and ker(P1) = Ṽ2, we get that

V1 × V2 = Ṽ1 ⊕ Ṽ2 .
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3.2. Direct sums and projections

Remark 3.2.13. Somewhat surprisingly, if X is a normed space and X =
M1 ⊕M2 for some closed subspaces M1,M2, then it may happen that the
projection P1 from X on M1 along M2 is unbounded (cf. Exercise 3.7), in
which case the projection P2 on M2 along M1 is also unbounded (since
P1 + P2 = I). However this peculiarity does not arise if X is a Banach
space, but the proof of this fact is beyond the scope of these notes. (One
may for example invoke the so-called closed graph theorem, proven in more
advanced courses).

Remark 3.2.14. It is common to say that a closed subspaceM of a normed
space X can be complemented when there exists a closed subspace N of X
such that X = M ⊕N . It is not true that a closed subspace can always be
complemented, even if X is a Banach space; for example, it is known that
the closed subspace

c0(N) = {f ∈ `∞(N) : lim
n→∞

f(n) = 0}

can not be complemented in `∞(N) (with uniform norm), but we don’t have
yet the tools necessary to prove this. Proposition 3.2.11 tells us that if a
closed subspace M of a normed space X is the range of a projection P in
B(X), then M can be complemented. The previous remark implies that the
converse holds when X is a Banach space. It is also known that a finite
dimensional subspace of a normed space can always be complemented. We
will see in the next chapter that any closed subspace of a Hilbert space can
be complemented (by its orthogonal complement).

Direct sums and projections are useful in connection with the study of
linear operators.

Proposition 3.2.15. Assume X is a vector space such that X = M1 +̇M2
for some subspaces M1,M2. To each S1 ∈ L(M1) and S2 ∈ L(M2), we may
associate an operator S = S1+̇S2 ∈ L(X) given by

(S1+̇S2)(x) := S1(x1) + S2(x2)

for x = x1 + x2 ∈ X with x1 ∈M1 and x2 ∈M2.
If P1 (resp. P2) denote the projection from X on M1 along M2 (resp. on

M2 along M1), then S = S1+̇S2 commutes with each Pj, that is, we have
SPj = PjS for j = 1, 2.

Moreover, if X is a normed space, M1 and M2 are closed in X, and P1
is bounded (or, equivalently, P2 is bounded), then S1+̇S2 is bounded if and
only if S1 and S2 are bounded.

(Note that if X is a Banach space, then P1 and P2 are automatically
bounded, as mentioned in Remark 3.2.13).
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Proof. The reader should have no difficulty to provide the necessary details,
so we leave this as an exercise. �

Definition 3.2.16. Let notation be as in Proposition 3.2.15. When an
operator S ∈ L(X) can be written as S = S1+̇S2 for some S1 ∈ L(M1) and
S2 ∈ L(M2), then we say that S is decomposable w.r.t. X = M1 +̇M2.

When an operator is decomposable w.r.t. a direct sum decomposition, we
may study it by studying each of its components. It is therefore of interest
to know when this happens. The following notion will be useful.

Definition 3.2.17. Let X be a vector space and T ∈ L(X). A subset M
of X is said to be invariant under T when T (M) ⊆M .

Example 3.2.18. Let notation be as in Proposition 3.2.15, and set
S := S1+̇S2 ∈ L(X). Then M1 and M2 are both invariant under S. Indeed,
if x1 ∈ M1, then S(x1) = S1(x1) ∈ M1. Similarly, S(x2) ∈ M2 for all
x2 ∈M2.

Example 3.2.19. Assume X is a vector space over F and T ∈ L(X). The
range of T is then a subspace of X which is invariant under T : indeed, with
M = T (X), we have T (M) ⊆ T (X) = M .

Moreover, for λ ∈ F, set

ET
λ := ker(T − λI) .

Then ET
λ is also a subspace of X, which is invariant under T : indeed, for

every x ∈ ET
λ , we have T (x) = λx ∈ ET

λ . Of course, when ET
λ 6= {0}, then

λ is an eigenvalue of T , and ET
λ is the associated eigenspace.

Proposition 3.2.20. Assume X is a vector space over F such that X =
M1 +̇M2 for some subspaces M1,M2. Let P1 (resp. P2) denote the projection
on M1 along M2 (resp. on M2 along M1) and consider S ∈ L(X). Then the
following conditions are equivalent :

(a) S is decomposable w.r.t. X = M1 +̇M2 ;

(b) both M1 and M2 are invariant under S ;

(c) S commutes with P1 ;

(d) S commutes with P2 .
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3.2. Direct sums and projections

Proof. If (a) holds, then it follows from Proposition 3.2.15 that (c) and (d)
hold. Since P2 = I − P1, it is elementary that (c) is equivalent to (d).

Assume that (c) holds. Let x1 ∈M1. Then we have

S(x1) = S(P1(x1)) = P1(S(x1)) ∈ P1(X) = M1 .

Thus, M1 is invariant under S. Moreover, as (d) also holds, we get in a
similar way that M2 is invariant under S. Hence, (b) holds.

Finally, assume (b) holds. Then, for j = 1, 2, we may define Sj ∈ L(Mj)
by

Sj(xj) := S(xj) for all xj ∈Mj .

Let x ∈ X. Then x = x1 + x2 for x1 ∈M1 and x2 ∈M2, so we get

S(x) = S(x1 + x2) = S(x1) + S(x2) = S1(x1) + S2(x2) = (S1+̇S2)(x) .

This shows that S = S1+̇S2 , hence that (a) holds. �

Remark 3.2.21. Assume that X is a vector space over F and T ∈ L(X)
has an eigenvalue λ ∈ F. (For example, if X is finite dimensional and F = C,
then every T ∈ L(X) has an eigenvalue). A natural question is then whether
the eigenspace M1 = ET

λ , which is invariant under T , can be complemented
in X by some subspace M2 which is also invariant under T . This may not be
the case (see Exercise 3.9), but if it happens, then we have T = λIM1 +̇T2
where T2 = T|M2 ∈ L(M2), and we can focus on T2. Moreover, in good cases,
one can proceed further in an inductive way. This is basically the main idea
used in the proof of the spectral theorem for symmetric real matrices. The
same idea can also be used for compact self-adjoint operators on Hilbert
spaces.

Finally, we mention for completeness that one can also consider direct
sums decompositions of a vector space with more than two summands.

Let X is a vector space over F, and assume that M1,M2, . . . ,Mn are
subspaces of X. Then X is said to be the (internal) algebraic direct sum of
M1,M2, . . . ,Mn if X = M1 +M2 + · · ·+Mn and the following independence
condition holds: if x1 ∈M1, x2 ∈M2, . . . , xn ∈Mn and

x1 + x2 + · · ·+ xn = 0 ,

then x1 = x2 = · · · = xn = 0. We leave it as an easy exercise to check that
these two conditions are equivalent to requiring that every x ∈ X can be
written in a unique way as x = x1 + · · ·+ xn with x1 ∈M1, . . . , xn ∈Mn.
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3.3 Extension by density and continuity
This short section is devoted to a very useful principle in linear analysis,
often called the principle of extension by density and continuity. We will
need the following elementary lemma, which is probably well-known.

Lemma 3.3.1. Assume that X and Y are metric spaces and f, g are con-
tinuous maps from X to Y which agree on a dense subset X0 of X. Then
f = g.

Proof. Let x ∈ X. Since X0 is dense in X, there exists a sequence {xn}n∈N
in X0 which converges to x. By continuity of f and g, we get

f(x) = lim
n
f(xn) = lim

n
g(xn) = g(x) .

�

Theorem 3.3.2. Assume that X is a normed space and Y is a Banach
space (both over F). Assume also that X0 is a dense subspace of X, while Y0
is a subspace of Y . Let T0 ∈ B(X0, Y0). Then T0 extends in a unique way to
an operator T ∈ B(X, Y ). It satisfies that ‖T‖ = ‖T0‖.

Proof. Let x ∈ X. Since X0 is dense in X, there exists a sequence {xn}n∈N
in X0 such that ‖x−xn‖ → 0 as n→∞. In particular, {xn}n∈N is a Cauchy
sequence in X0. We claim that {T0(xn)}n∈N is a Cauchy sequence in Y .
Indeed, let ε > 0, and choose N ∈ N such that

‖xm − xn‖ < ε/‖T0‖ for all m,n ≥ N .

Then, for all m,n ∈ N , we get

‖T0(xm)− T0(xn)‖ = ‖T0(xm − xn)‖ = ‖T0‖ ‖xm − xn‖ < ε ,

as desired.
Since Y is complete, we can conclude that there exists some y ∈ Y

such that limn T0(xn) = y. Note that y only depends on x. Indeed, as-
sume {x′n}n∈N is another sequence in X0 converging to x. Then the se-
quence x1, x

′
1, x2, x

′
2, . . . , xn, x

′
n, . . . in X0 also converges to x, so, arguing

as above, we get that there exists some z ∈ Y such that the sequence
T0(x1), T0(x′1), T0(x2), T0(x′2), . . . , T0(xn), T0(x′n), . . . converges to z. This
implies that

lim
n
T0(x′n) = z = lim

n
T0(xn) = y .

Hence it makes sense to define T (x) := y. Doing this for every x ∈ X, we
get a map T : X → Y , and it is easy to check that T is linear, so we leave
this as an exercise.
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Next, we show that T is bounded. Let x ∈ X and pick {xn}n∈N in X0
converging to x. As T (x) = limn T0(xn) and ‖T0(xn)‖ ≤ ‖T0‖ ‖xn‖ for all
n ∈ N, we get

‖T (x)‖ = lim
n
‖T0(xn)‖ ≤ ‖T0‖ lim

n
‖xn‖ = ‖T0‖ ‖x‖ .

It follows that T ∈ B(X, Y ) with ‖T‖ ≤ ‖T0‖.
Further, T is an extension of T0. Indeed, let x ∈ X0. Then set xn := x

for all n ∈ N. Since {xn}n∈N is a sequence in X0 converging to x, we get
that

T (x) = lim
n
T0(xn) = T0(x) .

The uniqueness of T as an extension of T0 is immediate from Lemma 3.3.1.
Finally, we have

‖T0‖ = sup{‖T0(x)‖ : x ∈ X0, ‖x‖ ≤ 1}
= sup{‖T (x)‖ : x ∈ X0, ‖x‖ ≤ 1}
≤ sup{‖T (x)‖ : x ∈ X, ‖x‖ ≤ 1} = ‖T‖ ≤ ‖T0‖ .

Thus, ‖T‖ = ‖T0‖, as desired. �

Remark 3.3.3. The conclusion of Theorem 3.3.2 is not necessarily true if
Y is a normed space which is not complete (cf. Exercise 3.15).

An interesting special case of Theorem 3.3.2 is when T0 is an isometry.
We recall that a linear map between normed spaces is an isometry when it
is norm-preserving. A linear isometry is clearly bounded.

Corollary 3.3.4. Assume that X is a normed space, Y is a Banach space,
X0 is a dense subspace of X, Y0 is a subspace of Y , and U0 ∈ L(X0, Y0) is
an isometry. Then the unique extension of U0 to an operator U in B(X, Y )
is also an isometry.

Proof. Theorem 3.3.2 guarantees that U0 extends in a unique way to U ∈
B(X, Y ). Let x ∈ X and pick {xn}n∈N in X0 converging to x. We then have
U(x) = limn U0(xn), so we get

‖U(x)‖ = lim
n
‖U0(xn)‖ = lim

n
‖xn‖ = ‖x‖ .

�

Using Corollary 3.3.4, it can be shown that the completion of a (non-
complete) normed space is unique up to isometric isomorphism (cf. Exercise
3.17). We also record an important particular case of Theorem 3.3.2.
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Corollary 3.3.5. Assume that X is a Banach space and X0 is a dense
subspace of X. Then every T0 ∈ B(X0) extends in a unique way to an
operator T ∈ B(X), which satisfies that ‖T‖ = ‖T0‖.

Example 3.3.6. Let a, b ∈ R, a < b, and equip the space C([a, b]) of all con-
tinuous complex functions on [a, b] with the norm ‖f‖2 = (

∫ b
a |f(s)|2 ds)1/2.

Considering the square [a, b]× [a, b] as a metric space w.r.t. the Euclidean
metric inherited from R2, let K : [a, b]× [a, b]→ C be a continuous function.
One can then associate to K an integral operator TK on C([a, b]) as follows.

Let f ∈ C([a, b]). Since the function t → K(s, t) f(t) is continuous on
[a, b] for each s ∈ [a, b], we may define a function TK(f) : [a, b]→ C by

[TK(f)](s) =
∫ b

a
K(s, t) f(t) dt for all s ∈ [a, b] .

We leave it as an exercise to verify, using basic knowledge from elementary
analysis, that TK(f) is continuous on [a, b] and satisfies

‖TK(f)‖2 ≤
( ∫ b

a

∫ b

a
|K(s, t)|2 dsdt

)1/2
‖f‖2 .

As the map f → TK(f) is then clearly linear, it follows that TK is a bounded
linear operator from C([a, b]) into itself.

Let now L2([a, b]) denote the L2-space associated with the measure space
([a, b],A, µ), where µ is the Lebesgue measure on the σ-algebra A of all
Lebesgue measurable subsets of [a, b].

As we may identify C([a, b]) with a dense closed subspace of L2([a, b])
(cf. Exercise 2.7), we get from Corollary 3.3.5 that TK has a unique extension
to a bounded operator on L2([a, b]), also denoted by TK . The function K is
usually called the kernel of the integral operator TK . We will come back to
such integral operators later.

We note that more generally, one can define integral operators associated
with kernels K which are L2-functions on [a, b] × [a, b] (with respect to
the Lebesgue product measure), but this requires a thorough knowledge of
integration theory on product spaces.
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3.4 Exercises
Exercise 3.1. Let H be a Hilbert space which is infinite-dimensional (as a
vector space). Argue first that there exists an orthonormal sequence {xn}n∈N
in H. Then use this sequence to show that the unit ball H1 is not compact.

Exercise 3.2. Let X be a normed space. LetM denote a finite-dimensional
subspace of X, and assume M 6= X.

a) Let x ∈ X \M . Show that d := infm∈M ‖x−m‖ > 0.
b) Show that there exists y ∈ X such that ‖y‖ = 1 and

1
2 ≤ ‖y −m‖ for all m ∈M.

c) Assume that X is infinite-dimensional (as a vector space). Show that
the unit ball X1 is not compact.

(Hint : Use b) to construct inductively a sequence {yn}n∈N in X1 such
that 1/2 ≤ ‖yn − yk‖ for all 1 ≤ k < n.)

Exercise 3.3. Let X be the subspace of `∞(N) given by

X = {f : N→ C : f(n) = 0 for all but finitely many n}.

a) Show that X is infinite-dimensional.
b) Consider X as a normed space w.r.t. ‖f‖u = supn∈N |f(n)| and let

L : X → C be defined by

L(f) =
∞∑
n=1

f(n)

for all f ∈ X. Clearly, L ∈ L(X,C). Show that L is unbounded. Check
also that ker(L) is not closed in X.

Exercise 3.4. Let PR denote the real vector space consisting of all polyno-
mials in one real variable with real coefficients. For p ∈ PR, set

‖p‖ := sup
t∈[0,1]

|p(t)| .

a) Explain why p→ ‖p‖ gives a well-defined norm on PR.
b) Define a linear operator D : PR → PR by

D(p) = p′ (the derivative of p).

Show that D is unbounded. Conclude that PR is infinite-dimensional.
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Exercise 3.5. Let V1, V2 be vector spaces over F. We recall that their
(external) algebraic direct sum (also called their algebraic direct product) is
the vector space

V1 × V2 = {(v1, v2) : v1 ∈ V1, v2 ∈ V2},

with operations given by
(v1, v2) + (v′1, v′2) := (v1 + v′1, v2 + v′2) ,

λ (v1, v2) := (λv1, λv2)
for v1, v

′
1 ∈ V1, v2, v

′
2 ∈ V2 and λ ∈ F.

a) Set Ṽ1 = {(v1, 0) : v1 ∈ V1} and Ṽ2 = {(0, v2) : v2 ∈ V2}. Check that
Ṽi is a subspace of V1 × V2 which is isomorphic to Vi for i = 1, 2, and that

V1 × V2 = Ṽ1 +̇ Ṽ2 .

b) Assume X is a vector space, M1 and M2 are subspaces of X and
X = M1 +̇M2. Show that X is isomorphic to M1 ×M2.

Exercise 3.6. Let V1, V2 be normed spaces over F and set V := V1 × V2.
For p ∈ [1,∞) and (v1, v2) ∈ V , set

‖(v1, v2)‖p :=
(
‖v1‖p + ‖v2‖p

)1/p
.

Set also ‖(v1, v2)‖∞ := max{‖v1‖, ‖v2‖}.
a) Check that ‖ · ‖p gives a norm, called the p-norm on V , for each

p ∈ [1,∞]. Then show that all these p-norms on V are equivalent.
b) Set Ṽ1 := {(v1, 0) : v1 ∈ V1} and Ṽ2 := {(0, v2) : v2 ∈ V2}, so

V = Ṽ1 +̇ Ṽ2 (cf. Exercise 3.5). Let P1 ∈ L(V ) denote the projection from V
on Ṽ1 along Ṽ2, and consider the normed space (V, ‖ · ‖p) for some p ∈ [1,∞].
Show that P1 is bounded.

Exercise 3.7. Let X be the subspace of `1(N) given by
X = {f : N→ C : f(n) = 0 for all but finitely many n}

and consider X as a normed space w.r.t. the 1-norm ‖f‖ := ∑
n∈N |f(n)].

Let M1 be the subspace of X given by
M1 = {f ∈ X : f(2n) = n f(2n− 1) for all n ∈ N} ,

and let M2 be the subspace of X given by
M2 = {f ∈ X : f(2n− 1) = 0 for all n ∈ N} .

Show that X = M1 ⊕M2, and that the projection from X on M1 along M2
is unbounded.
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Exercise 3.8. Prove Proposition 3.2.15.

Exercise 3.9. Set X = C2 and let {e1, e2} denote the standard basis
of X. Let T ∈ L(X) be the linear operator satisfying T (e1) = e1 and
T (e2) = i e1 + e2. Clearly, 1 is an eigenvalue of T . Set M1 = ET

1 , so M1 is a
subspace of X which is invariant under T .

Show that there is no subspace M2 of X which is invariant under T and
satisfies that X = M1 +̇M2.

Exercise 3.10. Let X be a vector space over F.

a) Assume X = M1 +̇M2 for some subspaces M1 and M2 of X, and let
P1, P2 denote the associated projection maps. Define S ∈ L(X) by

S(x) := P1(x)− P2(x) = 2P1(x)− x .

Check that S2 = I. Moreover, check that

M1 = ker(I − S) = {x ∈ X : S(x) = x},

M2 = ker(I + S) = {x ∈ X : S(x) = −x}.

The map S is called the symmetry through M1 along M2.

b) Assume S ∈ L(X) satisfies S2 = I. Show that (I+S)(X) = ker(I−S)
and (I − S)(X) = ker(I + S). Moreover, show that

X = ker(I − S) +̇ ker(I + S)

and that S is the symmetry through ker(I − S) along ker(I + S). Finally,
check that S is decomposable with respect to this direct sum decomposition.

c) Assume now that X is a normed space and that S ∈ B(X) satisfies
S2 = I. Deduce that X = ker(I − S)⊕ ker(I + S).

d) Let a > 0 and consider the space X = C([−a, a]) with the uniform
norm. Define S : X → X by

[S(f)](t) = f(−t) for all f ∈ X and t ∈ [−a, a] .

Check that S is bounded and S2 = I. Deduce that X = Xeven⊕Xodd , where

Xeven := {g ∈ X : g(−t) = g(t) for all t ∈ [−a, a]} and

Xodd := {h ∈ X : h(−t) = −h(t) for all t ∈ [−a, a]}.
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Exercise 3.11. Let X = R3 and consider X as an inner product space
w.r.t. the Euclidean inner product. Let R ∈ L(X), R 6= IX . Assume that the
standard matrix U of R is orthogonal (i.e., U tU = I) and has determinant
equal to 1.

a) Show that 1 is an eigenvalue of R, and that the associated eigenspace
M := ER

1 is 1-dimensional.

b) Let N = M⊥ denote the orthogonal complement of M . As should be
well-known, we have X = M +̇N .

Show that R is decomposable w.r.t. X = M +̇N , so we may write
R = IM+̇R′ with R′ ∈ L(N).

c) Let B′ be an orthonormal basis for N . Show that the matrix of R′
w.r.t. B′ is a 2× 2 rotation matrix.

d) Describe how R acts in geometrical terms.

Exercise 3.12. Let X be a vector space over F and let M be a subspace
of X. Define a relation ∼M on X by x ∼M y if and only if y − x ∈M .

a) Check that ∼M is an equivalence relation on X.

The equivalence class of x ∈ X w.r.t. ∼M is the set {x+m : m ∈ M},
which we will denote x + M . The set consisting of all these equivalence
classes is called the quotient space (of X by M), and is denoted by X/M .

b) Check that X/M becomes a vector space over F with respect to the
operations given by

(x+M) + (x′ +M) := (x+ x′) +M , λ (x+M) := (λx) +M

for all x, x′ ∈ X and λ ∈ F. You should first argue that these operations
are well-defined.

The map Q : X → X/M given by Q(x) = x+M is called the quotient
map. It is evident that Q is linear.

c) Assume now that X = M +̇N for some subspaces M and N of X.
Show that X/M is isomorphic to N . (Similarly, X/N is isomorphic to M).

Hint : Consider the map π : N → X/M given by π := Q|N : N → X/M ,
i.e.,

π(y) := y +M for all y ∈ N , (3.4.1)

and show that π is an isomorphism.
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Exercise 3.13. Assume that X is a normed space and M is a closed
subspace of X. For each element x+M in the quotient space X/M (defined
in the previous exercise), set

‖x+M‖ := inf
m∈M

‖x+m‖ (= inf
m∈M

‖x−m‖) .

a) Show that the map x+M → ‖x+M‖ gives a norm on X/M , called
the quotient norm. Then check that the quotient map Q : X → X/M
is contractive, i.e., ‖Q(x)‖ ≤ ‖x‖ for all x ∈ X. In particular, we have
Q ∈ B(X,X/M).

b) Let now N be a subspace of X such that X = M +̇N .
Let π : N → X/M be defined by (3.4.1), and let P ′ : X → X denote
the projection from X on N along M . Consider X/M as a normed space
w.r.t. the quotient norm, and M ×N as a normed space w.r.t. any choice of
p -norm, cf. Exercise 3.6. Show that the following assertions are equivalent:

(i) N is closed inX (soX = M⊕N) and π : N → X/M is an isomorphism
of normed spaces;

(ii) The map (m,n) → m + n from M × N to X is an isomorphism of
normed spaces;

(iii) P ′ is bounded.

Exercise 3.14. Consider X = R2. Find three subspaces M1,M2,M3 of X
such that

• X = M1 +M2 +M3;

• M1 ∩M2 ∩M3 = {(0, 0)};

• X is not the algebraic direct sum of M1,M2 and M3.

This illustrates why the definition of an algebraic direct sum of more than
two subspaces must be formulated in a different way than the one you
possibly had guessed.

Exercise 3.15. Let X be a Banach space having a dense subspace X0 which
is not complete. Consider the identity map I0 : X0 → X0. Show that I0
does not have an extension to a bounded linear map I0 : X → X0.

Exercise 3.16. Assume that X is a normed space and Y is a Banach space
(both over F), and let {Tk}k∈N be a sequence in B(X, Y ) which is uniformly
bounded in the sense that M := supk∈N ‖Tk‖ <∞ .
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Moreover, assume that there exists a dense subset S of X such that
{Tk(x)}k∈N converges in Y for every x ∈ S.

Show that there exists T ∈ B(X, Y ) such that

T (x) = lim
k
Tk(x) for all x ∈ X .

Exercise 3.17. Assume X0 is a normed space and let (X, i) denote a
completion of X0, that is, X is a Banach space and i : X0 → X is a linear
isometry such that i(X0) is dense in X. (As mentioned in Remark 1.1.7,
such a completion always exists.)

Show that (X, i) is unique up to isometric isomorphism, meaning that
the following holds: if (X ′, i′) is another completion of X0, then there exists
an isometric isomorphism U : X → X ′ such that i′ = U ◦ i.

Exercise 3.18. a) Provide the details missing in Example 3.3.6.
We outline below how one may define more directly integral operators on

L2([a, b]). Let µ denote the Lebesgue measure on the Lebesgue measurable
subsets of [a, b] and let K be a continuous complex function on [a, b]× [a, b].
For each s ∈ [a, b], let ks : [a, b]→ C denote the continuous function defined
by ks(t) := K(s, t) for all t ∈ [a, b].

b) Let f ∈ L2([a, b]) and s ∈ [a, b]. Show the function ks f is Lebesgue
integrable on [a, b] and satisfies∫

[a,b]
ks f dµ | ≤ ‖ks‖2 ‖f‖2 .

c) Let f ∈ L2([a, b]) and define g : [a, b]→ K by

g(s) =
∫

[a,b]
ks f dµ =

∫
[a,b]

K(s, t) f(t) dµ(t) for each s ∈ [a, b] .

Show that g is continuous and check that

‖g‖2 ≤ M ‖f‖2 , whereM :=
( ∫ b

a

∫ b

a
|K(s, t)|2 dsdt

)1/2
.

Deduce that we obtain a linear map T 0
K : L2([a, b])→ L2([a, b]) by setting(

T 0
K(f)

)
(s) :=

∫
[a,b]

ks f dµ for each f ∈ L2([a, b]) and all s ∈ [a, b],

which satisfies that ‖T 0
K(f)‖2 ≤ M ‖f‖2 for all f ∈ L2([a, b]).

d) Check that the operator TK : L2([a, b])→ L2([a, b]) defined by

TK([f ]) = [T 0
K(f)] for all [f ] ∈ L2([a, b])

is well-defined, linear and bounded, with ‖TK‖ ≤M .
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CHAPTER 4

More on Hilbert spaces

By a Hilbert space we always mean a Hilbert space over F, unless otherwise
specified.

4.1 Geometry in Hilbert spaces
In courses in elementary linear algebra, one learns that if M is finite-
dimensional subspace of an inner product space H, then every vector in
H can be written in a unique way as the sum of a vector in M and a
vector in the orthogonal complement M⊥. Since M and M⊥ are both closed
subspaces of H, this means that H = M ⊕M⊥. The projection of H on M
along M⊥ is then called the orthogonal projection of H on M . As we are
going to establish, such a decomposition of H also holds when H is a Hilbert
space and M is closed subspace of H, not necessarily finite-dimensional.

We recall first that if (X, d) is a metric space, x ∈ X and A is a nonempty
subset of X, then the distance from x to A is defined by

d(x,A) = inf{d(x, y) : y ∈ A} .

If for example A is compact, then the function y → d(x, y), being continuous,
will attain its minimum on A; hence, in this case, there exists some (not
necessarily unique) xA ∈ A such that d(x,A) = d(x, xA). However, if A is
only closed, then such an xA may not exist (cf. Exercise 4.1).

If we now consider a Hilbert space H with the metric dH associated to its
norm, a vector x ∈ H and a closed subspaceM of H, thenM is not compact
and the result above does not apply. However, if M is finite-dimensional,
then we know from previous courses that there exists a unique xM ∈ M
which gives the best approximation to x in M , i.e., which satisfies that

‖x− xM‖ ≤ ‖x− y‖ for all y ∈M,
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that is, we have dH(x, xM) = dH(x,M). Moreover, we also know that xM
is given as the orthogonal projection of x on M . When M is not finite-
dimensional, but still closed, we will reverse this prosess by showing first
that there exists a unique best approximation xM to x in M , and then use
this to define the orthogonal projection of x on M .

We will actually prove a more general result, valid for any closed convex
subset of H. We recall that a subset C of some vector space V (over F) is
called convex if C contains the line segment between any two elements of C,
i.e., if we have (1− t)x+ ty ∈ C whenever x, y ∈ C and t ∈ [0, 1].

Clearly, any subspace of a vector space is convex, as is any ball in
a normed space. Using that the norm in a Hilbert space satisfies the
parallellogram law, we will prove the following result, which the reader is
advised to illustrate geometrically by looking at various examples in R2.

Theorem 4.1.1. Let C be a nonempty closed convex subset of a Hilbert
space H and let x ∈ H. Then there is a unique vector xC ∈ C such that
dH(x, xC) = dH(x,C), that is, such that

‖x− xC‖ ≤ ‖x− y‖ for all y ∈ C.

The vector xC is called the best approximation to x in C.

Proof. We first consider the case where x = 0. We then have to show that
there is a unique vector 0C ∈ C of minimal norm, i.e, which satisfies that

‖0C‖ = inf
{
‖y‖ : y ∈ C

}
.

Set s := inf
{
‖y‖2 : y ∈ C

}
. For each n ∈ N we can find yn ∈ C such that

s ≤ ‖yn‖2 < s+ 1
2n . (4.1.1)

Then the sequence {yn}n∈N is Cauchy in H. Indeed, consider m,n ∈ N.
Then, using the parallellogram law and (4.1.1), we get that

‖yn + ym‖2 + ‖yn − ym‖2 = 2 ‖yn‖2 + 2 ‖ym‖2 < 4 s+ 1
n

+ 1
m
.

Now, since C is convex, we have c := 1
2 yn + 1

2 ym ∈ C. Hence,

‖yn + ym‖2 = 4 ‖c‖2 ≥ 4 s ,

so we get

‖yn − ym‖2 < 4 s+ 1
n

+ 1
m
− ‖yn + ym‖2 ≤ 1

n
+ 1
m
.
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Thus, given ε > 0, we can choose N ∈ N such that N ≥ (2ε2)−1, and obtain
that ‖yn − ym‖ < ε for all n,m ≥ N , as desired.

As H is complete, there exists y0 ∈ H such that limn yn = y0. Since C
is closed, y0 ∈ C. Letting n→∞ in (4.1.1), we get that

‖y0‖ =
√
s = inf{‖y‖ : y ∈ C}.

If y′0 ∈ C also satisfies that ‖y′0‖ = inf{‖y‖ : y ∈ C}, then we can consider
the sequence {zn}n∈N in C given by zn = y′0 if n is odd and zn = y0 if n is
even. Since zn satisfies (4.1.1) (with yn = zn) for each n, we can conclude as
above that {zn}n∈N is convergent. This clearly implies that y′0 = y0. Thus,
y0 is the unique vector in C satisfying ‖y0‖ = inf{‖y‖ : y ∈ C}, and we can
set 0C := y0.

In the general case where x ∈ H, we note that the set

D := {x− y : y ∈ C}

is closed and convex. Using the first part, we get that there exists a unique
vector 0D ∈ D such that ‖0D‖ = inf{‖z‖ : z ∈ D} = d(x,C). Then
xC := x− 0D ∈ C has the desired properties. �

One important application is when C is a closed subspace M of H.

Theorem 4.1.2. Let M be a closed subspace of a Hilbert space H. Then
we have

H = M ⊕M⊥ .

The associated projection PM of H on M along M⊥ is given by

PM(x) = xM for all x ∈ H ,

where xM ∈M is the best approximation to x in M (cf. Theorem 4.1.1). We
call PM the orthogonal projection of H on M and write sometimes ProjM
instead of PM . The linear map PM is bounded, with ‖PM‖ = 1 if M 6= {0}.
Moreover, we have

(M⊥)⊥ = M and PM⊥ = IH − PM .

Proof. Let x ∈ H and set x⊥ := x− xM . We claim that x⊥ belongs to M⊥.
To show this, let y ∈M and ε > 0. Since (xM + ε y) ∈M , we get from

Theorem 4.1.1 that

‖x⊥‖2 = ‖x− xM‖2 ≤ ‖x− (xM + ε y)‖2 = ‖x⊥ − ε y‖2

= ‖x⊥‖2 − 2 ε Re(〈x⊥, y〉) + ε2 ‖y‖2 ,
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which gives that
2 Re(〈x⊥, y〉) ≤ ε ‖y‖2 .

As this holds for every ε > 0, we obtain that Re(〈x⊥, y〉) ≤ 0. Applying this
to −y ∈M , we also get that −Re(〈x⊥, y〉) ≤ 0, i.e., Re(〈x⊥, y〉) ≥ 0. Thus,
it follows that Re(〈x⊥, y〉) = 0. If F = R, this means that 〈x⊥, y〉 = 0. If
F = C, we also have that iy ∈M , and this gives that

Im(〈x⊥, y〉) = Re(−i 〈x⊥, y〉) = Re(〈x⊥, i y〉) = 0.

Thus, 〈x⊥, y〉 = 0 in this case too. As this holds for every y ∈M , the claim
is proven.

Since x = xM + x⊥, by definition of x⊥, we get that

H = M + M⊥ .

Now, we also have that M ∩M⊥ = {0} (because if y ∈ M ∩M⊥, then
〈y, y〉 = 0, so y = 0), while M and M⊥ are both closed in H. Thus,
H = M ⊕M⊥, as we wanted to show.

The projection map PM : H → H on M along M⊥ is then clearly given
by PM(x) = xM for x ∈ H. Using Pythagoras’ identity, we get that

‖PM(x)‖2 = ‖xM‖2 ≤ ‖xM‖2 + ‖x⊥‖2 = ‖xM + x⊥‖2 = ‖x‖2

for all x ∈ H, showing that ‖PM‖ ≤ 1. Since PM(y) = y whenever y ∈M ,
we have that ‖PM(y)‖ = 1 if y ∈M and ‖y‖ = 1. It follows that ‖PM‖ = 1
if M 6= {0}, as asserted.

Consider now y ∈ M . Then for all z ∈ M⊥, we have 〈y, z〉 = 0. This
implies that y ∈ (M⊥)⊥. Hence we have M ⊆ (M⊥)⊥.

To show the reverse inclusion, that is (M⊥)⊥ ⊆M , we first observe that
by applying the first part of the theorem to M⊥, we get that

H = M⊥ ⊕ (M⊥)⊥ .

Now let x ∈ (M⊥)⊥, and set again x⊥ := x − xM . Since x⊥ ∈ M⊥ and
xM ∈M ⊆ (M⊥)⊥, we can write

x = x⊥ + xM , where x⊥ ∈M⊥ and xM ∈ (M⊥)⊥, and
x = 0 + x , where 0 ∈ M⊥ and x ∈ (M⊥)⊥.

By the uniqueness of decomposition in a direct sum, we get that x = xM ,
so x ∈ M . Thus, we have shown that (M⊥)⊥ ⊆ M , and we can conclude
that (M⊥)⊥ = M .
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Finally, for x ∈ H, we have

x = (x− xM) + xM ,

where (x− xM) ∈M⊥ and xM ∈M = (M⊥)⊥. This gives that

PM⊥(x) = x− xM = (IH − PM)(x) .

Hence, PM⊥ = IH − PM .
�

Remark 4.1.3. Assume that M is finite-dimensional subspace of a Hilbert
space H and that B = {u1, . . . , un} is an orthonormal basis for M . Then
we know that the orthogonal projection PM of H on M is given by

PM(x) =
n∑
j=1
〈x, uj〉uj for all x ∈ H .

A similar formula holds when M is only assumed to be a closed subspace
of H, as we will see in the next section after having discussed orthonormal
bases in Hilbert spaces.

Corollary 4.1.4. Let M be closed subspace of a Hilbert space H. Then
M = H if and only if M⊥ = {0}.

In connection with the next corollary, we recall that if S is a nonempty
subset of a vector space V , then Span (S) denote the subspace of V consisting
of all possible finite linear combinations of vectors in S.

Corollary 4.1.5. Let S denote a nonempty subset of a Hilbert space H.
Then Span (S) is dense in H if and only if S⊥ = {0}.

Proof. Set M := Span (S), which is a closed subspace of H. Then Span (S)
is dense in H if and only if M = H. As one easily verifies that S⊥ = M⊥

(cf. Exercise 4.3), the result follows from Corollary 4.1.4. �

A nonempty subset S of a normed space X is sometimes called total in
X when Span (S) is dense in X. So the corollary above says that S is total
in H if and only if S⊥ = {0}.

Example 4.1.6. Let (X,A, µ) be a measure space and set L2 := L2(X,A, µ).
We can organize L2 as a Hilbert space (over C) as follows.

Let f, g ∈ L2. Then g is measurable (since g = Re(g) − i Im(g)) and∫
X |g|2 dµ =

∫
X |g|2 dµ = ‖g‖2

2 < ∞, so g ∈ L2. Hence, f g ∈ L1, and we
can set 〈

[f ], [g]
〉

:=
∫
X
f g dµ .
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We leave it as an exercise to check that this gives a well-defined inner product
on L2. As the associated norm obviously coincides with ‖ ·‖2, L2 is complete
w.r.t. this norm and we can conclude that L2 is a Hilbert space.

Now, let E ∈ A and set F := Ec ∈ A. If g : X → C is measurable, let
us say that g lives essentially on E when µ

(
{x ∈ F : g(x) 6= 0}

)
= 0. Then

let ME be the subset of L2 given by

ME :=
{

[g] : g ∈ L2 and g lives essentially on E
}
.

Similarly, we can define MF . We claim that

MF = (ME)⊥ and ME = (MF )⊥ . (4.1.2)

To prove this, assume first that [g] ∈ ME and [h] ∈ MF . Then one easily
sees that g = g 1E µ-a.e. and h = h1F µ-a.e., so, as E ∩ F = ∅, we get〈

[g], [h]
〉

=
∫
X
g 1E h1F dµ =

∫
X
g h1E∩F dµ = 0 .

Since this is true for all [g] ∈ ME, this implies that [h] ∈ (ME)⊥. As this
holds for all [h] ∈MF , we get that MF ⊆ (ME)⊥.

To show the reverse inclusion, let [h] ∈ (ME)⊥. Then we have∫
X
g h dµ = 0 whenever [g] ∈ME .

In particular, since [h1E] ∈ME, we get∫
X
|h|2 1E dµ =

∫
X

(h1E)h dµ = 0 .

Since |h|2 1E is nonnegative on X, this implies that

µ
(
{x ∈ X : |h(x)|2 1E(x) 6= 0}

)
= 0 .

As {x ∈ E : h(x) 6= 0} = {x ∈ X : |h(x)|2 1E(x) 6= 0}, we get that
µ
(
{x ∈ E : h(x) 6= 0}

)
= 0, hence that h lives essentially on F . Thus,

[h] ∈MF . This shows that (ME)⊥ ⊆MF .
Altogether, we have proved that MF = (ME)⊥. Interchanging E and F ,

we get that ME = (MF )⊥, and the proof of (4.1.2) is finished.
Since the orthogonal complement of any subset is a closed subspace, we

can conclude that ME and MF are closed subspaces of L2. Theorem 4.1.2
now gives that

L2 = ME ⊕ (ME)⊥ = ME ⊕MF .
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We note that the fact that L2 = ME +̇MF is a simple consequence of the
equation

[f ] = [f 1E] + [f 1F ] , where [f 1E] ∈ME , [f 1F ] ∈MF ,

which holds for all [f ] ∈ L2. From this equation, we now see that the
orthogonal projection of L2 on ME (resp. MF ) is given by

PME
([f ]) = [f 1E] (resp. PMF

([f ]) = [f 1F ] ).

4.2 Orthonormal bases in Hilbert spaces
The notion of an orthonormal basis for a finite-dimensional inner product
space, which is well-known from elementary linear algebra, have a natural
generalization to Hilbert spaces.

Definition 4.2.1. A nonempty subset B of a Hilbert space H is called an
orthonormal basis for H when B is orthonormal and Span (B) is dense in H.

Suppose a Hilbert space H is finite-dimensional (and nonzero). Then an
orthonormal set B inH has to be finite, so Span (B), being finite-dimensional,
is closed in H; hence, Span (B) is dense in H if and only if Span (B) = H.
Thus we see that Definition 4.2.1 agrees with the usual one when H is
finite-dimensional. We also mention that some authors like to define the
empty set to be an orthonormal basis for the trivial Hilbert space H = {0}.

Our first example is of great importance in Fourier analysis.

Example 4.2.2. Let H = L2([−π, π],A, µ), where A denotes the σ-algebra
of all Lebesgue measurable subsets of [−π, π], and µ is the normalized
Lebesgue measure on A, that is,

µ(A) := 1
2 π λ(A) for all A ∈ A ,

where λ denotes the Lebesgue measure on R. In particular, we have
µ([−π, π]) = 1. For each n ∈ Z, let en : [−π, π] → C denote the con-
tinuous function given by

en(t) := e int for all t ∈ [−π, π] .

As is probably well-known (and easy to check), the set

B := {[en] : n ∈ Z}
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is an orthonormal subset of H. Moreover, Span (B) is dense in H.
To show this, let T denote the space of all (complex) trigonometrical

polynomials, i.e., T := Span ({en : n ∈ Z}). Clearly, we have

Span (B) = {[h] : h ∈ T } .

Further, let Cper([−π, π]) = {k ∈ C([−π, π]) : k(−π) = k(π)}. We will
use the fact (shown for example in Lindstrøm’s book) that T is dense in
Cper([−π, π]) w.r.t. the uniform norm ‖ · ‖u.
Let [f ] ∈ H and ε > 0. Using Exercise 2.7 we can find g ∈ C([−π, π]) such
that

‖ [f ]− [g] ‖2 < ε/3 . (4.2.1)
Moreover, it is easy to see that we can pick k ∈ Cper([−π, π]) such that

‖ [g]− [k] ‖2 = ‖ g − k ‖2 < ε/3 . (4.2.2)

Now, as mentioned above, we can find h ∈ T such that ‖k − h‖u < ε/3.
Since

‖ [k]− [h] ‖2
2 =

∫
[−π,π]

|k − h|2 dµ

≤ ‖k − h‖2
u

∫
[−π,π]

dµ

= ‖k − h‖2
u µ([−π, π])

= ‖k − h‖2
u ,

we get
‖ [k]− [h] ‖2 ≤ ‖k − h‖u < ε/3 . (4.2.3)

Using the triangle inequality, (4.2.1), (4.2.2) and (4.2.3), we obtain that

‖ [f ]− [h] ‖2 = ‖ [f ]− [g] + [g]− [k] + [k]− [h] ‖2

≤ ‖ [f ]− [g] ‖2 + ‖ [g]− [k] ‖2 + ‖ [k]− [h] ‖2

< ε/3 + ε/3 + ε/3 = ε .

This shows that [f ] ∈ Span (B). Hence, Span (B) = H, as asserted.
We can now conclude that B = {[en] : n ∈ Z} is an orthonormal basis

for H.
More generally, one may consider the L2-space associated to an interval

[a, b] and the normalized Lebesgue measure µ := 1
b−a λ. Then, letting e

′
n be

defined for each n ∈ Z by

e′n(t) = e int 2π/(b−a) for all t ∈ [a, b],

one may argue in a similar way as above, and conclude that B′ = {e′n : n ∈ Z}
is an orthonormal basis for this L2-space.
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An immediate consequence of Corollary 4.1.5 is the following useful
characterization of orthonormal bases:

Proposition 4.2.3. Assume that B is an orthonormal subset of a Hilbert
space H. Then B is an orthonormal basis for H if and only if B⊥ = {0}.

Example 4.2.4. Let X be a nonempty set. Then `2(X) has a natural
orthonormal basis E which is the analogue of the standard basis {e1, . . . , en}
for Fn (which may be identified with `2({1, . . . , n})).

Indeed, for each x ∈ X, let ex ∈ `2(X) be defined by ex = 1{x}, and set

E := {ex : x ∈ X} .

Then E is clearly orthonormal. Moreover, let f ∈ `2(X), f ∈ E⊥. Thus, for
each x ∈ X, we have 〈f, ex〉 = 0. As

〈f, ex〉 =
∑
y ∈X

f(y)ex(y) =
∑
y ∈{x}

f(y) = f(x) ,

we get that f(x) = 0 for all x ∈ X, i.e., f = 0. This shows that E⊥ = {0},
and Proposition 4.2.3 gives that E is an orthonormal basis for `2(X).

It will be shown in more advanced courses that every Hilbert space
(which is non-zero) has an orthonormal basis. The proof is nonconstructive
as it relies on Zorn’s lemma, i.e., on the axiom of choice. We will take this
fact as granted. Of course, in applications, it is better to have at hand a
concrete orthonormal basis whenever possible.

Example 4.2.5. The Gram-Schmidt orthonormalization prosess, of great
importance in the finite-dimensional case, can be generalized to cover the
following situation:
Let H be a Hilbert space, H 6= {0}. Let {xj}j∈N be a sequence of vectors in
H \ {0} and set S := {xj : j ∈ N}. Assume that Span (S) is dense in H.

We remark that such a sequence exists whenever H is finite-dimensional
(since repetitions are allowed in a sequence). More generally, it exists
whenever H is separable, i.e., whenever H contains a countable dense subset,
cf. Exercise 4.9.

For each n ∈ N, set Mn := Span ({x1, . . . , xn}) . We note that for each n
we have Mn ⊆Mn+1. Moreover, Span (S) = ⋃

n∈NMn.

Proceeding inductively, we can construct an orthonormal basis Bn for each
Mn as follows:

49



4. More on Hilbert spaces

i) We set B1 :=
{

1
‖x1‖ x1

}
. Clearly, B1 is an orthonormal basis for M1.

ii) Let n ∈ N and assume that we have constructed an orthonormal basis
Bn for Mn.

If xn+1 ∈Mn, then set Bn+1 := Bn. Otherwise, set

yn+1 := xn+1 − ProjMn
(xn+1) and Bn+1 := Bn ∪

{ 1
‖yn+1‖

yn+1
}
.

It follows readily that Bn+1 is an orthonormal basis for Mn+1.

Set now B := ⋃
n∈N Bn. Then B is orthonormal, and Span (B) = Span (S),

so
Span (B) = Span (S) = H .

Hence, B is an orthonormal basis for H.
We observe that since each Bn is finite, B is countable. Conversely, if H

has a countable orthonormal basis, then it can be shown that H is separable
(cf. Exercise 4.9).

When H is a nontrivial finite-dimensional inner product space, and
B = {u1, . . . , un} is an orthonormal basis for H, we know that every x ∈ H
has a Fourier expansion w.r.t. B, i.e., we have

x =
n∑
j=1
〈x, uj〉uj .

As we will soon see, a similar expansion also holds in any infinite dimensional
Hilbert space.

We will use the following notation. If j → tj is a function from a
nonempty set J into [0,∞), then we set∑

j ∈ J
tj := sup

{ ∑
j ∈F

tj : F ⊆ J, F is finite and nonempty
}
∈ [0,∞] .

Equivalently, ∑j ∈ J tj is the integral of the nonnegative function j → tj
w.r.t. the counting measure on P(J) (= the σ-algebra of all subsets of J).

We first note that Bessel’s inequality holds for any orthonormal set:

Lemma 4.2.6. Assume that B is an orthonormal set in an inner product
space H, and let x ∈ H. Then∑

u∈B

∣∣∣〈x, u〉∣∣∣2 ≤ ‖x‖2 ,

and the set Bx :=
{
u ∈ B : 〈x, u〉 6= 0

}
is countable.
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4.2. Orthonormal bases in Hilbert spaces

Proof. Let F be a nonempty finite subset of B. As F is orthonormal, Bessel’s
inequality for F gives that∑

u∈F

∣∣∣〈x, u〉∣∣∣2 ≤ ‖x‖2 .

Thus we get that

sup
{ ∑
u∈F

∣∣∣〈x, u〉∣∣∣2 : F ⊆ B, F is finite and nonempty
}
≤ ‖x‖2,

which proves the first assertion.
Further, this implies that the set Bx,n := {u ∈ B : |〈x, u〉|2 ≥ 1/n} is

finite for every n ∈ N. Hence, Bx = ⋃
n∈N Bx,n is countable.

�

The next lemma will be useful at several occasions.

Lemma 4.2.7. Assume {uj : j ∈ N} is a countably infinite orthonormal
set of distinct vectors in a Hilbert space H and let {cj}j∈N be any sequence
in F satisfying that

∞∑
j=1
|cj|2 < ∞ .

Then the series ∑∞j=1 cj uj converges to some y ∈ H, and we have that

〈y, uk〉 = ck for every k ∈ N.

Proof. This result is essentially shown in Lindstrøm’s book, but we sketch
the argument for the ease of the reader. For each n ∈ N, set yn = ∑n

j=1 cj uj .
Then, for any m > n, Pythagoras’ identity gives that

‖ym − yn‖2 =
m∑

j=n+1
‖cj uj ‖2 =

m∑
j=n+1

|cj|2.

Using the assumption, the sum above can be made as small as we want by
choosing m and n large enough. Thus the sequence {yn}n∈N is Cauchy in
H, so it converges to some y ∈ H, i.e., we have

y =
∞∑
j=1

cj uj .

For each k ∈ N, continuity and linearity of the inner product in the first
variable gives then that

〈y, uk〉 =
∞∑
j=1

cj 〈uj, uk〉 = ck .

�
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Theorem 4.2.8. Let H be a Hilbert space, H 6= {0}, and let B be an
orthonormal subset of H. Then the following conditions are equivalent:

(a) B is an orthonormal basis for H.

(b) Every x ∈ H \ {0} has a Fourier expansion

x =
∑
u∈Bx

〈x, u〉u (4.2.4)

where Bx = {u ∈ B : 〈x, u〉 6= 0} is countable (cf. Lemma 4.2.6) and
nonempty.
By (4.2.4) we mean that if Bx is not finite, and Bx = {uj : j ∈ N} is
any enumeration of the distinct elements of Bx, then we have

lim
n→∞

∥∥∥x− n∑
j=1
〈x, uj〉uj

∥∥∥ = 0 , i.e., x =
∞∑
j=1
〈x, uj〉uj .

(c) For every x ∈ H we have ‖x‖2 = ∑
u∈B

∣∣∣〈x, u〉∣∣∣2.
The formula in (c) is called Parseval’s identity.

Proof. (a) ⇒ (b): Assume that B is an orthonormal basis for H and let
x ∈ H \ {0}.

We first observe that Bx 6= ∅. Indeed, suppose that Bx = ∅. This means
that x ∈ B⊥. But B⊥ = {0} by Proposition 4.2.3, so x = 0, a contradiction.

We now consider the case where Bx is countably infinite. (The case
where Bx is finite is much easier and left to the reader). Let {uj : j ∈ N}
be an enumeration of the distinct elements of Bx. Since Bx is orthonormal,
Bessel’s inequality gives that

∞∑
j=1

∣∣∣〈x, uj〉|2 ≤ ‖x‖2.

Applying Lemma 4.2.7 with cj = 〈x, uj〉 for every j ∈ N, we get that the
series ∑∞j=1〈x, uj〉uj converges to some y ∈ H, which satisfies that

〈y, uk〉 = ck = 〈x, uk〉 for every k ∈ N.

Moreover, if u ∈ B \ Bx , we get that

〈y, u〉 =
∞∑
j=1
〈x, uj〉 〈uj, u〉 = 0 = 〈x, u〉 .

It follows that x − y ∈ B⊥ = {0}, hence that x = y. This shows that the
assertion in (b) holds in this case.
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(b) ⇒ (c): Assume (b) holds, and let x ∈ H \ {0}. Again we consider
the more difficult case where Bx is countably infinite, so Bx = {uj : j ∈ N}
as above. By continuity of the norm and Pythagoras’ identity, we get

‖x‖2 =
∞∑
j=1

∣∣∣〈x, uj〉∣∣∣2 .
Hence, given ε > 0, we can find n ∈ N such that ‖x‖2 −∑n

j=1

∣∣∣〈x, uj〉∣∣∣2 < ε,
giving

‖x‖2 − ε <
n∑
j=1

∣∣∣〈x, uj〉∣∣∣2 ≤ ∑
u∈B

∣∣∣〈x, u〉∣∣∣2 .
Since this holds for every ε > 0, we get that ‖x‖2 ≤ ∑

u∈B

∣∣∣〈x, u〉∣∣∣2. Com-
bining this inequality with Lemma 4.2.6, we see that (c) holds.

(c) ⇒ (a): Assume ‖x‖2 = ∑
u∈B

∣∣∣〈x, u〉∣∣∣2 for every x ∈ H. If x ∈ B⊥,
i.e., 〈x, u〉 = 0 for every u ∈ B, then we get ‖x‖2 = 0, so x = 0. Hence,
B⊥ = {0}, and Proposition 4.2.3 gives that (a) holds.

�

Remark 4.2.9. The Fourier expansion of x in Theorem 4.2.8 (b) can be
written in the form

x =
∑
u∈B
〈x, u〉u (4.2.5)

if one takes care of giving a meaning to convergence of generalized sums in
normed spaces. We discuss this in Exercise 4.12. In these notes, we will
sometimes use (4.2.5) as a short form of the Fourier expansion of x given by
(4.2.4).

Example 4.2.10. Let M be a closed subspace of a Hilbert space H and
assume that we have found an orthonormal basis C for M . Then we can use
it to compute the orthogonal projection PM of H on M :

Let x ∈ H. If x ∈M⊥, then PM (x) = 0, so we can assume x ∈ H \M⊥.
Since C is orthonormal in H, we know that Cx := {v ∈ C : 〈x, v〉 6= 0} is
countable. Set xM := PM(x) ∈M and x⊥ := x− xM ∈M⊥, and note that
xM 6= 0. Now, for each v ∈ C, we have

〈x, v〉 = 〈xM , v〉+ 〈x⊥, v〉 = 〈xM , v〉 .

Hence, Cx = CxM
. Moreover, applying Theorem 4.2.8 to M , xM ∈M \ {0}

and C, we get that
xM =

∑
v ∈CxM

〈xM , v〉 v .
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Using our previous observations, this formula can be rewritten as

PM(x) =
∑
v ∈Cx

〈x, v〉 v ,

generalizing the usual formula for PM(x) when M is finite-dimensional.

A straightforward consequence of Theorem 4.2.8 is the following:

Corollary 4.2.11. Assume a Hilbert space H contains a countably infinite
orthonormal subset B, enumerated as B = {vk : k ∈ N}. Then B is an
orthonormal basis for H if and only if

x =
∞∑
k=1
〈x, vk〉 vk

for all x ∈ H, if and only if

‖x‖2 =
∞∑
k=1

∣∣∣〈x, vk〉∣∣∣2
for all x ∈ H.

Example 4.2.12. Let B = {[en] : n ∈ Z} denote the orthonormal basis
for H = L2([−π, π],A, λ/2π) described in Example 4.2.2. For [f ] ∈ H and
n ∈ Z it is common to set

[̂f ] (n) := 〈 [f ], [en] 〉 = 1
2π

∫
[−π,π]

f(t)e−intdλ(t) ,

which is called the Fourier coefficient of [f ] at n.
In fact, it is usual to write f instead of [f ], having in mind that one

identifies functions which agree µ-a.e. Hence, the Fourier coefficient of f
at n is denoted by f̂(n), and the Fourier expansion of f w.r.t. B is then
written as

f =
∑
n∈Z

f̂(n) en ,

meaning that
f = lim

m→∞

m∑
n=−m

f̂(n) en (w.r.t. ‖ · ‖2).

This follows from Corollary 4.2.11 by enumerating B as e0, e−1, e1, e−2, e2,
etc. Similarly, we have

‖f‖2
2 =

∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 .
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4.3 Adjoint operators
Let X be a normed space (over F). We recall that the dual space X∗ consists
of the bounded linear functionals on X (with values in F), and that X∗ is
a Banach space w.r.t. the norm ‖ϕ‖ = sup{|ϕ(x)| : x ∈ X1}. The goal of
functional analysis is to gain new insight by exploiting the interplay between
a space and its dual. This is particularly successful when X is a Hilbert
space because the dual space may then be identified in a natural way with
the space itself.

Theorem 4.3.1. Let H be a Hilbert space (over F). For each y ∈ H, define
ϕy : H → F by

ϕy(x) := 〈x, y〉 for all x ∈ H .

Then ϕy ∈ H∗ for all y ∈ H.
Moreover, the map y → ϕy is a bijection from H onto H∗, which is

isometric, and conjugate-linear in the sense that

ϕλ1y1+λ2y2 = λ1 ϕy1 + λ2 ϕy2

for all λ1, λ2 ∈ F and all y1, y2 ∈ H.

Proof. Let y ∈ H. Then the map ϕy is clearly linear. Moreover, for all
x ∈ H, we have

|ϕy(x)| = |〈x, y〉| ≤ ‖x‖ ‖y‖ .

Hence, ϕy is bounded, with ‖ϕy‖ ≤ ‖y‖. If y 6= 0, then
∣∣∣ϕy( 1

‖y‖
y
) ∣∣∣ = 1

‖y‖
〈y, y〉 = ‖y‖,

so ‖ϕy‖ ≥ ‖y‖. Thus, ‖ϕy‖ = ‖y‖.
This shows that the map y → ϕy is an isometry from H into H∗. In

particular, it is injective. To show that it is surjective, let ϕ ∈ H∗. If ϕ = 0,
then we have ϕ = ϕ0. So assume ϕ 6= 0 and set M := kerϕ. Then M is a
closed subspace of H such that M 6= H. By Corollary 4.1.4, M⊥ 6= {0}, so
we can pick z ∈M⊥ such that ‖z‖ = 1, and set

y := ϕ(z) z ∈ H .

We claim that ϕ = ϕy. Indeed, let x ∈ H and set m := ϕ(x) z−ϕ(z)x ∈
H. Then we have

ϕ(m) = ϕ(x)ϕ(z)− ϕ(z)ϕ(x) = 0 ,
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so m ∈M . As z ∈M⊥, we get 〈m, z〉 = 0, i.e.,〈
ϕ(x) z, z

〉
=
〈
ϕ(z)x, z

〉
.

Hence
ϕ(x) = ϕ(x) ‖z‖2 = 〈ϕ(x) z, z〉 = 〈ϕ(z)x, z〉 = ϕ(z) 〈x, z〉

= 〈x, ϕ(z) z〉 = 〈x, y〉 = ϕy(x) ,
which shows the claim above, hence that the map y → ϕy is surjective.

Altogether, we have shown that this map is an isometric bijection from
H onto H∗, as desired.

The final assertion is an obvious consequence of the conjugate-linearity
of the inner product in the second variable. �

This theorem, which is one among a diversity of results being called
the Riesz representation theorem, has several useful consequences that will
be covered in later courses. Our main application here will be to use it to
associate an adjoint operator to every bounded operator on a Hilbert space.
Some people like to think of the adjoint as a kind of twin (or as a kind
of shadow), which happens to coincide with the original operator in many
cases of interest.

Theorem 4.3.2. Let H be a Hilbert space (over F). For each T ∈ B(H),
there is a unique operator T ∗ ∈ B(H), called the adjoint of T , satisfying〈

T (x), y
〉

=
〈
x, T ∗(y)

〉
(4.3.1)

for all x, y ∈ H .
The ∗-operation on B(H), T → T ∗, enjoys the following properties:

For all S, T ∈ B(H) and all α, β ∈ F, we have

• i) (αS+β T )∗ = αS∗+β T ∗ ; ii) (ST )∗ = T ∗S∗ ; iii) (T ∗)∗ = T ;

• iv) ‖T ∗‖ = ‖T‖ ; v) ‖T ∗T‖ = ‖T‖2.

Remark 4.3.3. If H and K are Hilbert spaces (over the same F), then one
may associate to each T ∈ B(H,K) a unique adjoint operator T ∗ ∈ B(K,H)
satisfying (4.3.1) for all x ∈ H and all y ∈ K, and enjoying similar properties.
We leave this as an exercise.

Proof of Theorem 4.3.2. Let T ∈ B(H) and consider y ∈ H. Using the
linearity of T and the linearity of the inner product in the first variable, we
get that the map ϕ : H → F defined by

ϕ(x) :=
〈
T (x), y

〉
for all x ∈ H ,
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is a linear functional on H. Moreover, as we have∣∣∣〈T (x), y
〉∣∣∣ ≤ ‖T (x)‖ ‖y‖ ≤ ‖T‖ ‖x‖ ‖y‖

for all x ∈ H, ϕ is bounded with ‖ϕ‖ ≤ ‖T‖ ‖y‖. Hence, ϕ ∈ H∗, and
Theorem 4.3.1 gives that there exists a unique vector in H, that we denote
by T ∗(y), such that ϕ = ϕT ∗(y) , i.e., such that〈

T (x), y
〉

=
〈
x, T ∗(y)

〉
(4.3.2)

for all x ∈ H. This theorem also gives that

‖T ∗(y)‖ = ‖ϕT ∗(y)‖ = ‖ϕ‖ ≤ ‖T‖ ‖y‖ . (4.3.3)

As what we have done above holds for every y ∈ H, we obtain a map
T ∗ : H → H which sends each y ∈ H to T ∗(y) ∈ H. In view of (4.3.2), it is
clear that (4.3.1) holds for all x, y ∈ H.

To show that T ∗ is linear, let y, y′ ∈ H and α ∈ F. Then, for all x ∈ H,
we have 〈

x, T ∗(α y + y′)
〉

=
〈
T (x), α y + y′

〉
= α

〈
T (x), y

〉
+
〈
T (x), y′

〉
= α

〈
x, T ∗(y)

〉
+
〈
x, T ∗(y′)

〉
=
〈
x, α T ∗(y) + T ∗(y′)

〉
.

This implies that T ∗(α y + y′) = αT ∗(y) + T ∗(y′), as desired.
Next, from (4.3.3), we see that T ∗ is bounded with ‖T ∗‖ ≤ ‖T‖. To show

the asserted uniqueness property of T ∗, assume that S ∈ B(H) satisfies the
same property as T ∗, i.e.,〈

T (x), y
〉

=
〈
x, S(y)

〉
for all x, y ∈ H .

Let y ∈ H. Then, for all x ∈ H, we get〈
x, S(y)

〉
=
〈
T (x), y

〉
=
〈
x, T ∗(y)

〉
.

This implies that S(y) = T ∗(y). Thus, S = T ∗.
We leave the proof of properties i) and ii) as an exercise. To show the

other properties, let T ∈ B(H). Then, for each y ∈ H, using equation (4.3.1)
for T ∗ instead of T , we get that, for all x ∈ H, we have〈

x, (T ∗)∗(y)
〉

=
〈
T ∗(x), y

〉
=
〈
y, T ∗(x)

〉
=
〈
T (y), x

〉
=
〈
x, T (y)

〉
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This implies that (T ∗)∗(y) = T (y). Thus, (T ∗)∗ = T , i.e., iii) holds
Now, we have seen that ‖T ∗‖ ≤ ‖T‖ holds for all T ∈ B(H). Thus we

get
‖T‖ = ‖(T ∗)∗‖ ≤ ‖T ∗‖ ≤ ‖T‖ .

Hence ‖T ∗‖ = ‖T‖, i.e., iv) holds.
Further, using iv), we get ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2. On the other

hand, for every x ∈ H, we have

‖T (x)‖2 =
〈
T (x), T (x)

〉
=
〈
x, T ∗(T (x))

〉
=
∣∣∣〈x, (T ∗T )(x)

〉∣∣∣ ≤ ‖x‖ ‖(T ∗T )(x)‖
≤ ‖T ∗T‖ ‖x‖2 .

This implies that ‖T‖2 ≤ ‖T ∗T‖. Hence we get ‖T‖2 = ‖T ∗T‖, i.e., v)
holds. �

Example 4.3.4. Consider H = Fn for some n ∈ N with its usual inner
product, and T ∈ B(H). Let A denote the standard matrix of T . Then the
standard matrix of T ∗ is A∗ := A

t.
Here, A denotes the matrix obtained by conjugating every coefficient of

A, while Bt denotes the transpose of a matrix B. Of course, if F = R, then
we just get A∗ = At.

Alternatively, we can formulate our assertion above by saying that if
TA ∈ B(H) denotes the operator given by multiplication with a matrix
A ∈Mn(F), then we have

(TA)∗ = TA∗ .

To prove this, let x, y ∈ H. Recall that 〈x, y〉 = xt y. So we get

〈TA(x), y〉 = (Ax)t y = xtAt y = xtA∗y = 〈x, TA∗(y)〉.

Since this holds for all x, y ∈ H, this implies that (TA)∗ = TA∗ , as asserted.
More generally, if H is a nontrivial finite-dimensional Hilbert space, B is

an orthonormal basis for H, and [T ]B is the matrix of T relative to B, then
we have

[T ∗]B =
(
[T ]B

)∗
.

The verification of this fact is an easy exercise. (One may argue in a similar
way as in the next example).

Example 4.3.5. Assume a Hilbert space H has a countably infinite or-
thonormal basis, enumerated as B = {uj}j∈N. Let T ∈ B(H). For each
(j, k) ∈ N× N, set

A(j, k) :=
〈
T (uk), uj

〉
∈ F.
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4.3. Adjoint operators

We may think of the map A sending each (j, k) to A(j, k) as the (infinite)
matrix of T (w.r.t. B) since, for each k ∈ N, we have

T (uk) =
∞∑
j=1

〈
T (uk), uj

〉
uj =

∞∑
j=1

A(j, k)uj . (4.3.4)

Now, as every x ∈ H has a Fourier expansion w.r.t. B, it is clear that T is
uniquely determined as a bounded operator on H by its values on B. Thus
we see from (4.3.4) that T is uniquely determined by its matrix A.

As T ∗ ∈ B(H) and〈
T ∗(uk), uj

〉
=
〈
uk, T (uj)

〉
=
〈
T (uj), uk

〉
= A(k, j),

we can conclude that the matrix of T ∗ w.r.t. B is A∗, where

A∗(j, k) := A(k, j) ,

so that, for all k ∈ N, we have

T ∗(uk) =
∞∑
j=1

A∗(j, k)uj =
∞∑
j=1

A(k, j)uj .

From (4.3.4) and Parseval’s identity, we also get that
∞∑
j=1
|A(j, k)|2 = ‖T (uk)‖2 ≤ ‖T‖2 <∞

for each k ∈ N, so the `2-norms of the column vectors of A are uniformly
bounded. However, such a condition on the column vectors of an infinite
matrix A is not sufficient in general to ensure that A is the matrix of some
operator in B(H). There are some known conditions guaranteeing this, but
we will only look at two cases below where one can argue directly.

a) Let {λj}j∈N be a bounded sequence in F, so that

M := sup{|λj| : j ∈ N} <∞.

In other words, the function j → λj belongs to `∞(N,F).
It is not difficult to see that there exists an operator D ∈ B(H) satisfying

that
D(uk) = λk uk for each k ∈ N. (4.3.5)

Indeed, consider x ∈ H. Then Parseval’s identity gives that
∞∑
j=1

∣∣∣λj 〈x, uj〉∣∣∣2 ≤ M2
∞∑
j=1

∣∣∣〈x, uj〉∣∣∣2 = M2 ‖x‖2 < ∞.
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Hence, Lemma 4.2.7 gives that the vector

D(x) :=
∞∑
j=1

λj 〈x, uj〉uj

satisfies that 〈D(x), uj〉 = λj 〈x, uj〉 for each j ∈ N. Thus, using Parseval’s
identity again, we get that

‖D(x)‖2 =
∞∑
j=1

∣∣∣λj 〈x, uj〉∣∣∣2 ≤M2 ‖x‖2 .

It follows now readily that the map x→ D(x) gives an operator D ∈ B(H)
such that ‖D‖ ≤ M and satisfying (4.3.5). Since ‖D‖ ≥ ‖D(uk)‖ = |λk|
for all k ∈ N, we also have that ‖D‖ ≥M . Hence, ‖D‖ = M .

It is now obvious that the matrix of D (w.r.t. B) is the diagonal (infinite)
matrix Λ defined for each (j, k) ∈ N by

Λ(j, k) =
λj if j = k,

0 otherwise.

The operator D is often called the diagonal operator associated to {λj}j∈N
(w.r.t. B).

From our discussion in the first part, we get that the matrix of D∗ is Λ∗.
Thus we have D∗(uk) = λk uk for all k ∈ N, so D∗ is the diagonal operator
associated to {λj }j∈N (w.r.t. B).

b) We may also easily argue that there exists an operator S ∈ B(H)
satisfying that

S(uk) = uk+1 for all k ∈ N. (4.3.6)

Indeed, since ∑∞n=2 |〈x, un−1〉|2 = ∑∞
j=1 |〈x, uj〉|2 = ‖x‖2 <∞ for all x ∈ H,

we may use Lemma 4.2.7 to define a map S : H → H by

S(x) =
∞∑
n=2
〈x, un−1〉un

which is then a linear isometry satisfying that S(un−1) = un for all n ≥ 2,
i.e., such that (4.3.6) holds. The map S is called the right shift operator on
H(w.r.t. B). The matrix of S (w.r.t. B) is the (infinite) matrix σ given by

σ(j, k) =
1 if j = k + 1,

0 otherwise.
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for each (j, k) ∈ N. Thus, the matrix of S∗(w.r.t. B) is the matrix σ∗ given
by

σ∗(j, k) = σ(k, j) =
1 if k = j + 1,

0 otherwise.

for all j, k ∈ N, so we get that

S∗(uk) =
∞∑
j=1

σ∗(j, k)uj =
0 if k = 1,
uk−1 if k ≥ 2.

The operator S∗ is called the left shift operator on H (w.r.t. B). We note
that S∗ is not isometric, in fact not even injective, since S∗(u1) = 0.

Example 4.3.6. Let (X,A, µ) be a measure space. Set L∞ := L∞(X,A, µ)
and H := L2(X,A, µ). For each f ∈ L∞, we may define a "multiplication"
operator Mf ∈ B(H) by

Mf

(
[g]
)

= [fg] for all [g] ∈ H .

Indeed, this follows readily from Proposition 2.2.4 (with q = 2). Now, for
all [g], [h] ∈ H, we have

〈
Mf ([g]), [h]

〉
=
∫
X
fg h dµ =

∫
X
g f h dµ =

〈
[g],Mf ([h])

〉
.

This implies that (Mf )∗ = Mf .

Example 4.3.7. Let K : [a, b]× [a, b]→ C be a continuous function and let
TK denote the associated integral operator on H = L2([a, b]), cf. Example
3.3.6 and Exercise 3.18. Then we leave it as an exercise to check that
(TK)∗ = TK∗ , where K∗(s, t) := K(t, s) for all s, t ∈ [a, b] .

As an illustration that the adjoint operator contains valuable information
about the original operator, we include a proposition showing the connection
between the fundamental subspaces associated to these operators.

Proposition 4.3.8. Let H be a Hilbert space (over F) and let T ∈ B(H).
Then we have:

(a) ker(T ) = T ∗(H)⊥ and ker(T ∗) = T (H)⊥.

(b) T (H) = ker(T ∗)⊥ and T ∗(H) = ker(T )⊥.
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Proof. Both equalities in (a) are immediate consequences of (4.3.1). Using
Exercise 4.3 with N = T (H), we then get T (H) = (T (H)⊥)⊥ = ker(T ∗)⊥.
The second equality in (b) is shown similarly (or by replacing T with T ∗ in
the first one).

�

Corollary 4.3.9. Let H be a Hilbert space (over F) and let T ∈ B(H).
Then the image of T is dense in H if and only if T ∗ is injective (i.e., is
one-to one).

Proof. Using Proposition 4.3.8 and Corollary 4.1.4, we get

T (H) = H ⇔ ker(T ∗)⊥ = H ⇔ ker(T ∗) = {0} .

As T ∗ is linear, we also have ker(T ∗) = {0} ⇔ T ∗ is injective. �

As another illustration, we also mention:

Proposition 4.3.10. Let H be a Hilbert space (over F) and let T ∈ B(H).
Then T is invertible in B(H) if and only if T ∗ is invertible in B(H), in
which case we have (T ∗)−1 = (T−1)∗.

Proof. Left to the reader as Exercise 4.17. �

4.4 Self-adjoint operators
In this section, we introduce one of the most important classes of bounded
operators on a Hilbert space and discuss some of their properties.

Definition 4.4.1. LetH be a Hilbert space (over F). An operator T ∈ B(H)
is called self-adjoint when T ∗ = T , that is, we have〈

T (x), y
〉

=
〈
x, T (y)〉 for all x, y ∈ H .

If F = C, a self-adjoint operator in B(H) is also called Hermitian, while
it is often called symmetric if F = R.

We note that if T, T ′ ∈ B(H) are self-adjoint, and λ ∈ R, then it is
obvious that λT + T ′ is also self-adjoint.

Example 4.4.2. Let A = [aj,k] ∈ Mn(F) and let TA ∈ B(Fn) denote the
operator given by multiplication with A (cf. Example 4.3.4). Then TA is
self-adjoint if and only if A∗ = A, i.e., ak,j = aj,k for all j, k ∈ {1, . . . , n}. In
particular, when F = R, TA is self-adjoint if and only if A is symmetric.
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Example 4.4.3. Assume H is a Hilbert space with a countably infinite
orthonormal basis B. Let D denote a diagonal operator associated to a
bounded sequence {λj}j∈N in F (w.r.t. B), as in Example 4.3.5.

Then D is self-adjoint if and only if λj = λj for all j ∈ N, i.e., λj ∈ R
for all j ∈ N. In particular, D is always self-adjoint when F = R.

Let S denote the right shift operator on H (w.r.t. B). Then S∗ is the
left shift operator and it is obvious that S∗ 6= S. So S is not self-adjoint.

Example 4.4.4. Let (X,A, µ) be a measure space and setH := L2(X,A, µ).
If f ∈ L∞, then the multiplication operator Mf ∈ B(H) defined in Example
4.3.6 is self-adjoint if and only if Mf = Mf .

Thus, Mf is self-adjoint whenever f is real-valued (µ-a.e.). It can be
shown that the converse statement holds whenever (X,A, µ) satisfies the
mild assumption that it is semifinite (cf. Exercise 4.22).

Example 4.4.5. Let K : [a, b] × [a, b] → C be a continuous function
and let TK denote the associated integral operator on H = L2([a, b]), cf.
Example 4.3.7. Then TK is self-adjoint if and only if TK∗ = TK (where
K∗(s, t) = K(t, s)). Hence it is clear that TK is self-adjoint whenever K is
real-valued. We leave it as an exercise to check that the converse statement
also holds.

Example 4.4.6. Let M be a closed subspace of a Hilbert space H and let
PM denote the ortogonal projection of H on M . Then PM is self-adjoint.

Indeed, let x, y ∈ H. As PM(x) ∈M and y − PM(y) ∈M⊥, we have〈
PM(x), y − PM(y)

〉
= 0 .

Similarly, we have
〈
x− PM(x), PM(y)

〉
= 0 . Hence we get

〈
PM(x), y

〉
=
〈
PM(x), PM(y) + y − PM(y)

〉
=
〈
PM(x), PM(y)

〉
+
〈
PM(x), y − PM(y)

〉
=
〈
PM(x), PM(y)

〉
=
〈
PM(x), PM(y)

〉
+
〈
x− PM(x), PM(y)

〉
=
〈
PM(x) + x− PM(x), PM(y)

〉
=
〈
x, PM(y)

〉
It is easy to create self-adjoint operators.
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Proposition 4.4.7. Let H be a Hilbert space (over F) and T ∈ B(H).
Then T + T ∗, T ∗T and TT ∗ are all self-adjoint. Moreover, if F = C,

then −i (T − T ∗) is also self-adjoint.

Proof. The reader should have no difficulty to verify these assertions by
using the properties of the ∗-operation on B(H) listed in Theorem 4.3.2. �

A noteworthy consequence is that bounded self-adjoint operators on a
complex Hilbert space have a canonical decomposition similar to the one
enjoyed by complex numbers.

Corollary 4.4.8. Let H be a Hilbert space over C and let T ∈ B(H). Set

Re(T ) := 1
2
(
T + T ∗

)
, Im(T ) := 1

2 i
(
T − T ∗

)
.

Then Re(T ) and Im(T ) are both self-adjoint, and we have

T = Re(T ) + i Im(T ) .

Proof. The first assertion follows readily from Proposition 4.4.7. The second
one is elementary. �

Consider a bounded operator T on a Hilbert space H 6= {0}. The
numerical range of T is defined as the subset of F given by

WT :=
{ 〈
T (x), x

〉
: x ∈ H, ‖x‖ = 1

}
.

Some properties of T are reflected in the geometric properties of WT and of
its closure, see Exercise 4.31 for some facts illustrating this. We will mainly
be interested in the numerical radius of T , given by

NT := sup{ |λ| : λ ∈ WT} = sup{ |〈T (x), x〉| : x ∈ H, ‖x‖ = 1} .

We note that the Cauchy-Schwarz inequality implies that NT ≤ ‖T‖.
As we are going to prove below, a remarkable fact is that NT agrees with

‖T‖ when T is self-adjoint. We observe first that if T is self-adjoint, then
WT ⊆ R. Indeed, if T ∗ = T , then for every x ∈ H, we have

〈T (x), x〉 = 〈x, T (x)〉 = 〈T (x), x〉 ,

and the claim clearly follows.

Theorem 4.4.9. Let H be a Hilbert space, H 6= {0}, and let T ∈ B(H) be
self-adjoint. Then we have

‖T‖ = NT .
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Proof. It suffices to prove that ‖T‖ ≤ NT , hence that

‖T (x)‖ ≤ NT for all x ∈ H1. (4.4.1)

We first note that if v ∈ H, then |〈T (v), v〉| ≤ NT ‖v‖2.
Indeed, if v = 0, the claim is trivial. Otherwise, if v 6= 0 and u := 1

‖v‖ v,
so v = ‖v‖u, then∣∣∣〈T (v), v

〉∣∣∣ = ‖v‖2
∣∣∣〈T (u), u

〉∣∣∣ ≤ NT ‖v‖2 .

Let now x ∈ H1. If T (x) = 0, then the inequality in (4.4.1) is trivially
satisfied, so we can assume that T (x) 6= 0 and set y := 1

‖T (x)‖ T (x) ∈ H1.
Then we have

‖T (x)‖ = 1
‖T (x)‖

〈
T (x), T (x)

〉
=
〈
T (x), y

〉
. (4.4.2)

Similarly, ‖T (x)‖ =
〈
y, T (x)

〉
. As T is self-adjoint, we get

‖T (x)‖ =
〈
T (y), x

〉
. (4.4.3)

Combining (4.4.2) and (4.4.3), and using our previous observations, as well
as the parallellogram law and the fact that ‖x‖ ≤ 1, ‖y‖ = 1, we get

‖T (x)‖ = 1
2
(〈
T (x), y

〉
+
〈
T (y), x

〉)
= 1

4
(〈
T (x+ y), x+ y

〉
−
〈
T (x− y), x− y

〉)
≤ 1

4 NT

(
‖x+ y‖2 + ‖x− y‖2

)
= 1

2 NT

(
‖x‖2 + ‖y‖2

)
≤ NT .

This shows that (4.4.1) is satisfied, as desired. �

Having in mind the spectral theorem for symmetric real matrices, it is
legitimate to wonder whether it could be true that every self-adjoint operator
T ∈ B(H) is diagonalizable in the sense that there exists an orthonormal
basis for H consisting of eigenvectors for T . One quickly realizes that this
can not be the case, as a self-adjoint operator may not have any eigenvalue
at all!
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Example 4.4.10. Let H = L2([0, 1]) (with usual Lebesgue measure) and
let T = Mf be the self-adjoint operator in B(H) given by multiplication with
the bounded continuous function f(t) = t on [0, 1], cf. Example 4.4.4. Then
the reader should have no trouble in checking that T has no eigenvalues.

We will see in the next chapter that every compact self-adjoint operator
can be diagonalized in the sense mentioned above. Theorem 4.4.9 will help us
to make the first step in proving this, by showing that a compact self-adjoint
operator T has at least one an eigenvalue, namely ‖T‖ or −‖T‖.

4.5 Unitary operators
In this section, we look at another important class of operators on Hilbert
spaces. As a warm-up, we first characterize the linear operators which are
isometric. We recall that if H is a Hilbert space, then a map T : H → H is
said to preserve the inner product when it satisfies〈

T (x), T (y)
〉

= 〈x, y〉 for all x, y ∈ H.

Proposition 4.5.1. Let H 6= {0} be a Hilbert space (over F) and let
S : H → H. Then the following conditions are equivalent:

(i) S ∈ B(H) and S∗S = IH ;

(ii) S is linear and preserves the inner product ;

(iii) S is a linear isometry.

Proof. (i) ⇒ (ii): Assume S ∈ B(H) satisfies S∗S = IH . Then S is linear
and for all x, y ∈ H, we have〈

S(x), S(y)
〉

=
〈
x, (S∗S)(y)

〉
= 〈x, y〉 ,

so (ii) holds.
(ii) ⇒ (iii): Any map preserving the inner product is isometric, so this is
evident.
(iii) ⇒ (i): Assume S is a linear isometry. Then S ∈ B(H) and T :=
S∗S − IH ∈ B(H) is self-adjoint. Then for any x ∈ H, we have〈
T (x), x

〉
=
〈
(S∗S−I)(x), x

〉
=
〈
S(x), S(x)

〉
−〈x, x〉 = ‖S(x)‖2−‖x‖2 = 0

Thus, WT = {0}, so, using Theorem 4.4.9, we get that ‖T‖ = NT = 0.
Hence, T = 0, i.e., S∗S = IH , so (i) holds. �
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Example 4.5.2. Assume H is finite-dimensional and S : H → H is a
linear isometry, so S∗S = IH , cf. Proposition 4.5.1. As S is injective, it is
also surjective (since dim(S(H)) = dim(H)− dim(ker(S)) = dim(H), so
S(H) = H). Thus, S is bijective, so it has an inverse S−1 (which is also a
linear isometry). Since S∗S = IH , we get that S−1 = S∗. In particular, we
also have SS∗ = IH .

Remark 4.5.3. When H is infinite-dimensional, then a linear isometry S
is not necessarily surjective. A typical example is the right shift operator S
considered in Example 4.3.5, whose range does not contain the first basis
vector; in this case, we have S∗S = IH , while SS∗ 6= IH (cf. Exercise 4.20).

Definition 4.5.4. LetH be a Hilbert space (over F). An operator U ∈ B(H)
is called unitary when it satisfies

U∗U = UU∗ = IH .

Thus, U ∈ B(H) is unitary if and only if U is bijective and U−1 = U∗.
When F = R, some authors use the word orthogonal instead of unitary.

Proposition 4.5.5. Let H be a Hilbert space (over F) and let U : H → H.
Then the following conditions are equivalent :

(i) U ∈ B(H) and U is unitary ;

(ii) U is bijective, linear and preserves the inner product ;

(iii) U is a surjective linear isometry.

Proof. (i) ⇒ (ii): If U ∈ B(H) is unitary, then U is bijective and linear,
and Proposition 4.5.1 gives that it preserves the inner product. Hence, (ii)
holds.
(ii) ⇒ (iii): This implication is evident.
(iii) ⇒ (i): Suppose U is a surjective linear isometry. As a linear isometry
is injective, U is bijective. Moreover, Proposition 4.5.1 gives that U∗U = IH .
So we get that U−1 = U∗, i.e., U is unitary, and (i) holds. �

Example 4.5.6. Assume H has a countably infinite orthonormal basis B
and D is the diagonal operator associated to a bounded sequence {λj}j∈N
in F (w.r.t. B).

Then it is straightforward to check that D is unitary if and only if
λjλj = 1, i.e., |λj| = 1, for all j ∈ N.
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Example 4.5.7. Let (X,A, µ) be a measure space and setH := L2(X,A, µ).
For f ∈ L∞, consider the multiplication operator Mf ∈ B(H). Then we
clearly have

(Mf )∗Mf = M|f |2 = Mf (Mf )∗,

so we see that Mf is unitary whenever |f | = 1 µ-a.e. The converse holds if
µ is semifinite, cf. Exercise 4.29.

Example 4.5.8. Let H = `2(Z). We may then define the bilateral forward
shift operator U : H → H by

[U(ξ)](j) = ξ(j − 1) for all ξ ∈ H and all j ∈ Z.

Indeed, since the counting measure on Z is obviously translation-invariant,
we have ∑j∈Z |ξ(j − 1)|2 = ∑

j∈Z |ξ(j)|2 <∞, so we see that U(ξ) ∈ H and
‖U(ξ)‖2 = ‖ξ‖2. Thus U is isometric.

Clearly, U is also linear. Moreover, it is surjective: if η ∈ H, then we
have U(ξ) = η, where ξ is defined by ξ(j) := η(j + 1) for every j ∈ Z; one
may here argue as above to see that ξ ∈ H.

We may now conclude from Proposition 4.5.5 that U is unitary. Its adjoint
U∗ = U−1 is called the bilateral backward shift operator (on H = `2(Z)). We
note that if B = {en}n∈Z denotes the canonical basis of H = `2(Z) as in
Example 4.2.4, then we have

U(en) = en+1 and U∗(en) = en−1 for all n ∈ Z.

Let now H,K be Hilbert spaces (over F). A bijective, linear map U from
H onto K which preserves the inner product is often called an isomorphism
of Hilbert spaces. As in Proposition 4.5.5, one shows that it is equivalent to
require that U is a surjective linear isometry, or that U ∈ B(H,K) is unitary
in the sense that we have U∗U = IH and UU∗ = IK . (Here, U∗ ∈ B(K,H)
denotes the adjoint of U , cf. Remark 4.3.3). We will say therefore say that
H and K are isomorphic as Hilbert spaces when such a map U : H → K
exists.

Theorem 4.5.9. Let H 6= {0} be a Hilbert space over C, and let B be an
orthonormal basis of H. Then H and `2(B) are isomorphic as Hilbert spaces.

Proof. Let x ∈ H and define x̂ : B → C by

x̂(u) := 〈x, u〉 for all u ∈ B.
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Then Parseval’s identity says that ∑u∈B |x̂(u)|2 = ‖x‖2 . In particular, we
have x̂ ∈ `2(B) and ‖x̂‖ = ‖x‖. Thus we can define an isometric map
U : H → `2(B) by

U(x) = x̂ for all x ∈ H.
It is elementary to check that U is linear. Moreover, U is surjective.

Indeed, let ξ ∈ `2(B). As ∑u∈B |ξ(u)|2 <∞, the set

Bξ := {u ∈ B : ξ(u) 6= 0}

must be countable. Let {uj}j∈N be an enumeration of Bξ , where N =
{1, . . . , n} for some n ∈ N or N = N. If N = N, we have ∑∞j=1 |ξ(uj)|2 <∞ ,
and this implies readily that the sequence

{∑k
j=1 ξ(uj)uj

}
k∈N

is Cauchy,
hence convergent in H. Thus we may define x ∈ H by x := ∑

j∈N ξ(uj)uj,
and we then have

x̂(u) = 〈x, u〉 =
∑
j∈N

ξ(uj)〈uj, u〉 =
ξ(uk) if u = uk for some k ∈ N ,

0 if u ∈ B \ Bξ ,

i.e., x̂(u) = ξ(u) for all u ∈ B. Hence, U(x) = ξ, showing that U is surjective.
We can now conclude that U is an isomorphism of Hilbert spaces from

H to `2(B), as we wanted to show.
�

Remark 4.5.10. Theorem 4.5.9 is also true when H 6= {0} is a Hilbert
space over R, but one has then to replace `2(B) with the real `2-space

`2
R(B) :=

{
ξ : B → R :

∑
u∈B
|ξ(u)|2 <∞,

}
considered as a Hilbert space over R.

Remark 4.5.11. If H 6= {0} is a Hilbert space over C, and B,B′ are both
orthonormal bases of H, then we get from Theorem 4.5.9 that `2(B) and
`2(B′) are isomorphic as Hilbert spaces. It can be shown that this implies
that (and in fact is equivalent to) B and B′ having the same cardinality,
meaning that there exists a bijection between B and B′. (A similar statement
holds if H 6= {0} is a Hilbert space over R).
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4.6 Exercises
In the exercises of this chapter, H always denotes a Hilbert space over F,
unless otherwise stated.

Exercise 4.1. Consider X := `∞(N) as a metric space w.r.t. d(f, g) =
‖f − g‖u. Let A be the subset of X given by

A :=
{
a(N) : N ∈ N

}
,

where a(N)(n) = 1 if 1 ≤ n ≤ N and a(N)(n) = 0 if n > N .

a) Show that A is closed in X.

b) Let x ∈ X be given by x(n) = 1 + 1/n for all n ∈ N.
Show that d(x,A) = 1 and that 1 < d(x, a(N)) for all N ∈ N.

Exercise 4.2. Let c ∈ H, r > 0 and set B := Br(c) = {y ∈ H : ‖y−c‖ ≤ r}.
Check that B is closed and convex, and give a formula for xB when x ∈ H\B.

Exercise 4.3. Let S denote a nonempty subset of H and set
M := Span (S).

Verify that S⊥ = M⊥. Then deduce that M = (S⊥)⊥. Deduce also that
if N is a subspace of H, then N = (N⊥)⊥.

Exercise 4.4. Let M be a closed subspace of H, and let x ∈ H.

Show that PM(x) = y0 for some y0 ∈M if and only if x− y0 ∈M⊥.
Show also that PM (x) is the unique vector y0 in M such that x− y0 ∈M⊥.

Exercise 4.5. Assume P ∈ B(H) is a projection satisfying ‖P‖ = 1. Show
that P is the orthogonal projection of H on M := P (H).

Hint : Recall that H = P (H)⊕ kerP (cf. Proposition 3.2.11).

Exercise 4.6. Consider H = L2([a, b],A, µ), where A denotes the σ-algebra
of all Lebesgue measurable subsets of [a, b], and µ is the usual Lebesgue
measure on A. Set

M :=
{

[g] ∈ H : g ∈ L2,
∫

[a,b]
g dµ = 0

}
.

Check that M is a closed subspace of H. Then, given [f ] ∈ H, find an
expression for the best approximation of [f ] in M .
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Exercise 4.7. Let H1, H2 be Hilbert spaces over F and consider H :=
H1 ×H2 as a vector space over F. For (x1, x2), (y1, y2) ∈ H, set〈

(x1, x2), (y1, y2)
〉

:= 〈x1, y1〉 + 〈x2, y2〉 .

a) Check that this gives an inner product on H such that H is a Hilbert
space. Check also that the associated norm on H corresponds to the norm
‖ · ‖2 arising from the norms on H1 and H2.

b) Set H̃1 := {(x1, 0) : x1 ∈ H1} and H̃2 := {(0, x2) : x2 ∈ H2},
so H = H̃1 +̇ H̃2 (cf. Exercise 3.5).

Check that (H̃1)⊥ = H̃2 and (H̃2)⊥ = H̃1. Deduce that the projection
of H on H̃1 along H̃2 is the orthogonal projection of H on H̃1.

Exercise 4.8. Let (X,A, µ) be a measure space.

a) Show that 〈
[f ], [g]

〉
:=
∫
X
f g dµ

gives a well-defined inner product on L2 = L2(X,A, µ) (cf. Example 4.1.6).

b) Let E ∈ A. Set AE = {A ∩ E : A ∈ A} and µE = µ|AE
. We recall

that (E,AE, µE) is a measure space.
Show that there exists an isometric isomorphism from L2(E,AE, µE)

onto the space ME defined in Example 4.1.6.

Exercise 4.9. Let H 6= {0}. Show that the following conditions are
equivalent:

(a) H is separable;

(b) There is a sequence satisfying the assumptions in Example 4.2.5;

(c) H has a countable orthonormal basis.

Note that Example 4.2.5 shows that (b) ⇒ (c). So it suffices to show that
(a) ⇒ (b), and (c) ⇒ (a).

Exercise 4.10. Let H1 and H2 be Hilbert spaces over F, and let H be the
(external) direct product of H1 and H2, as defined in Exercise 4.7. Assume
B1 and B2 are orthonormal bases for H1 and H2, respectively.

Find an orthonormal basis B for H in terms of B1 and B2.
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Exercise 4.11. Let H = L2([−1, 1],A, µ), where A denote the Lebesgue-
measurable subsets of [−1, 1] and µ is the restriction of the usual Lebesgue
measure to A.

For each n ∈ {0} ∪ N, let pn+1 : [−1, 1]→ C be defined by pn+1(t) = tn,
and set S :=

{
[pn+1] : n ∈ {0} ∪ N

}
⊆ H.

a) Show that Span (S) is dense in H.

b) Apply the Gram-Schmidt orthonormalization process to S to obtain
an orthonormal basis B =

{
[qn+1] : n ∈ {0} ∪ N

}
for H, where each qn+1 is

the polynomial on [−1, 1] given by

qn+1(t) =

√
n+ 1

2

2n n!
dn

dtn

(
(t2 − 1)n

)
.

(These polynomials are called the normalized Legendre polynomials.)

Exercise 4.12. The concept of generalized sums can be used to provide an
alternative way of describing Fourier expansions in Hilbert spaces.

Let X be a normed space, J be a nonempty set, {xj}j∈J be a family of
elements of X, and x ∈ X. Then one says that the generalized sum ∑

j∈J xj
converges to x when the following holds: given ε > 0, there exists a finite
subset F0 ⊆ J such that for all finite subsets F of J containing F0, we have∥∥∥x−∑

j∈F
xj ‖ < ε ,

in which case we write
x =

∑
j∈J

xj .

Consider a Hilbert space H and x ∈ H.

a) Show that we have

x =
∑
u∈B
〈x, u〉u .

b) Show also that ifM is a closed subspace of H and C is an orthonormal
basis for M , then we have

PM(x) =
∑
v∈C
〈x, v〉 v .
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Exercise 4.13. In the context of Fourier analysis described in Example
4.2.12 (see also Example 4.2.2), the formula

‖f‖2
2 =

∑
n∈Z

∣∣∣f̂(n)
∣∣∣2

is called Parseval’s identity. (The more general equality obtained in Theorem
4.2.8 c) is also often called Parseval’s identity.)

a) Set f(t) = t for all t ∈ [−π, π]. Compute the Fourier coefficients of f .
b) Use a) and Parseval’s identity to show that

∞∑
n=1

1
n2 = π2

6 .

c) Set g(t) = et for all t ∈ [−π, π]. Use Parseval’s identity to obtain a
formula for the sum of the series

∞∑
n=1

1
n2 + 1 .

Exercise 4.14. Let H be the L2-space on [−π, π] w.r.t. to the normalized
Lebesgue measure µ, as in Example 4.2.2. Set

Heven := {[f ] ∈ H : f is even} and Hodd := {[f ] ∈ H : f is odd} .

We recall that f : [−π, π]→ C is called even if f(−t) = f(t) for all t, while
it is called odd if f(−t) = −f(t) for all t.

a) Show that Heven is a closed subspace of H and that (Heven)⊥ = Hodd.
Describe the orthogonal projection P of H on Heven.
Hint: It might be helpful to consider the map [f ]→ [f̃ ], where f̃(t) := f(−t).

b) Find an orthonormal basis for Heven and one for Hodd.

Exercise 4.15. Let T ∈ B(H). Assume H0 is a dense subspace of H which
is invariant under T , and let T0 ∈ B(H0) denote the restriction of T to H0.
Further, assume there exists some S0 ∈ B(H0) such that〈

T0(x), y
〉

=
〈
x, S0(y)

〉
for all x, y ∈ H0 .

Show that T ∗ = S, where S ∈ B(H) is the unique extension of S0 provided
by Theorem 3.3.2.
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Exercise 4.16. Show that the formula for (TK)∗ in Example 4.3.7 is correct.
Hint : Consider H0 = [g] : g ∈ C([a, b])} and use Exercise 4.15.

Exercise 4.17. Prove Proposition 4.3.10.

Exercise 4.18. Let v, w ∈ H and consider the linear operator Tv,w : H → H
defined by

Tv,w(x) := 〈x, v〉w for all x ∈ H .

Note that Tv,w has rank one if v, w ∈ H \ {0}.
a) Show that Tv,w is bounded with norm ‖Tv,w‖ = ‖v‖ ‖w‖. Then show

that (Tv,w)∗ = Tw,v.
b) Show that every T ∈ B(H) which has rank one is of the form T = Tv,w

for some v, w ∈ H \ {0}.
c) Assume T ∈ B(H) is a finite-rank operator, T 6= 0. Show that T may

be written as a finite sum of rank one operators in B(H).
Hint : Start by picking an orthonormal basis for T (H).
d) Show that if T ∈ B(H) is a finite-rank operator, then so is T ∗.

Exercise 4.19. Let T ∈ B(H) and let M be a closed subspace of H.
Show that

M is invariant under T if and only if M⊥ is invariant under T ∗.

Exercise 4.20. Let T ∈ B(H).
a) Show that ker(T ) = ker(T ∗T ) and T ∗(H) = (T ∗T )(H) .
b) Assume T is normal, i.e., satisfies T ∗T = TT ∗. Show that

ker(T ∗) = ker(T ) and T ∗(H) = T (H) .

c) Assume T is normal and has an eigenvalue λ. Show that λ is an
eigenvalue of T ∗, and that ET ∗

λ
= ET

λ .
d) Assume H has a countably infinite orthonormal basis B = {uj}j∈N

and let S ∈ B(H) be the right shift operator (w.r.t. B). Set T = S∗.
Show that T is not normal by checking that TT ∗ = S∗S = IH , while

T ∗T = SS∗ = P , where P is the orthogonal projection of H on {u1}⊥.
Check also that 0 is an eigenvalue for T , while 0 is not an eigenvalue

of T ∗ = S. (This shows that c) does not necessarily hold when T is not
normal.)

Finally, if you are in the right mood, show that S has no eigenvalues,
while every λ satisfying |λ| < 1 is an eigenvalue of T .
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Exercise 4.21. Let H andK be Hilbert spaces over F, and let T ∈ B(H,K).
a) Show that there exists a unique operator T ∗ ∈ B(K,H) (called the

adjoint of T ) satisfying that〈
T (x), y

〉
=
〈
x, T ∗(y)

〉
for all x ∈ H and all y ∈ K.

b) Let T ′ ∈ B(H,K) and α, β ∈ F. Let also L be a Hilbert space over F, and
let S ∈ B(K,L), so that ST ∈ B(H,L). Show that the following properties
hold:

• i) (αT +β T ′)∗ = αT ∗+β T ′ ∗ ; ii) (ST )∗ = T ∗S∗ ; iii) (T ∗)∗ = T ;

• iv) ‖T ∗‖ = ‖T‖ ; v) ‖T ∗T‖ = ‖T‖2.

Exercise 4.22. Let (X,A, µ) be a measure space. One says that (X,A, µ)
is semifinite when the following condition holds: if E ∈ A and µ(E) =∞,
then there exists F ⊆ E, F ∈ A such that 0 < µ(F ) <∞.

a) Show that (X,A, µ) is semifinite whenever it is σ-finite.
Assume from now on that (X,A, µ) is semifinite. Set H := L2(X,A, µ).

Let f ∈ L∞ and consider the multiplication operator Mf ∈ B(H) defined in
Example 4.4.4.

b) Show that ‖Mf‖ = ‖f‖∞.
c) Show that if Mf is self-adjoint, then f is real-valued µ-a.e. (As

observed in Example 4.3.6, the converse is true without any restriction on
(X,A, µ).)

Exercise 4.23. Assume P ∈ B(H) is a self-adjoint projection, i.e., it
satisfies that P ∗ = P = P 2. Show that P is the orthogonal projection of H
on M := P (H) (which is closed subspace of H, cf. Proposition 3.2.11).

Exercise 4.24. Let H 6= {0}.
a) Assume T ∈ B(H) is self-adjoint. Deduce from Theorem 4.4.9 that

T = 0 if and only if
〈
T (x), x

〉
= 0 for all x ∈ H.

b) Suppose F = R. Give an example with H = R2 showing that the
equivalence in a) may fail when T is not self-adjoint.

c) Assume F = C and let T ∈ B(H). Show that T = 0 if and only if〈
T (x), x

〉
= 0 for all x ∈ H.

Exercise 4.25. Show that the set B(H)sa := {T ∈ B(H) : T ∗ = T} is
closed in B(H).
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Exercise 4.26. Let H 6= {0}. If T ∈ B(H) is self-adjoint, we have seen that
WT ⊆ R; of course, if F = R, this gives no information on T as this inclusion
is then true for any T in B(H). We assume therefore in this exercise that
H 6= {0} is a Hilbert space over C.

Let T ∈ B(H). Then show that the following assertions are equivalent:

(i) T is self-adjoint;

(ii) WT ⊆ R;

(iii)
〈
T (x), x

〉
∈ R for all x ∈ H.

Exercise 4.27. A self-adjoint operator T in B(H) is called positive when〈
T (x), x

〉
≥ 0 for all x ∈ H , (4.6.1)

in which case we write T ≥ 0.
(We note that if F = C and T ∈ B(H) satisfies (4.6.1), then T is

automatically self-adjoint, as follows from the previous exercise.)

a) Let S ∈ B(H), and let R ∈ B(H) be self-adjoint.
Check that S∗S ≥ 0 and R 2 ≥ 0. Then show that

‖S‖ ≤ 1 ⇔ (IH − S∗S) ≥ 0 .

b) Let M be a closed subspace of H. Check that PM ≥ 0.

c) Assume that T, T ′ ∈ B(H) are positive and λ ∈ [0,∞).
Check that T + T ′ and λT are also positive.

d) Show that the set of positive operators in B(H) is closed in B(H).

Exercise 4.28. Let H = L2([0, 1]) (with usual Lebesgue measure) and let
T = Mf be the self-adjoint operator in B(H) given by multiplication with
the function f(t) = t on [0, 1], cf. Example 4.4.4. Show that T has no
(complex) eigenvalues.

Exercise 4.29. Let (X,A, µ) be a semifinite measure space (cf. Exercise
4.22), and let f ∈ L∞. Suppose that the multiplication operator Mf on
H = L2(X,A, µ) is unitary. Then show that |f | = 1 µ-a.e.
(As observed in Example 4.5.7, the converse statement is true without any
restriction on (X,A, µ).)
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Exercise 4.30. Assume H 6= {0} is separable (cf. Exercise 4.9) and infinite-
dimensional. Let then B be an orthonormal basis for H indexed by Z, say
B = {vk}k∈Z. One may then define the bilateral shift operator V : H → H
(w.r.t. B) by

V (x) =
∑
k∈Z
〈x, vk〉 vk+1 for all x ∈ H, i.e., by

V (x) = lim
n→∞

n∑
k=−n

〈x, vk〉 vk+1 for all x ∈ H.

a) Show that V is a unitary operator in B(H).
b) Describe V as a multiplication operator when H = L2([−π, π]) (with

normalized Lebesgue measure µ) and vk(t) = eikt for every k ∈ Z.
c) Assume F = C. Let U : H → `2(Z) denote the isomorphism of

Hilbert spaces defined in the proof of Theorem 4.5.9. Show that UV U∗ is
the bilateral forward shift operator on `2(Z).

Exercise 4.31. Let T be a bounded operator on a Hilbert space H 6= {0}.
Check that the following properties of WT and NT hold:

(a) WT ∗ =
{
λ : λ ∈ WT

}
; hence, NT ∗ = NT .

(b) WT contains all the possible eigenvalues of T .

(c) WαT+βIH
= αWT + β for all α, β ∈ F.

(d) WUTU∗ = WT , hence NUTU∗ = NT , for every unitary U ∈ B(H).

(e) WT is a compact subset of F when H is finite-dimensional.

It can also be shown that WT is a convex subset of F. This result is called
the Toeplitz-Hausdorff Theorem, but the proof is beyond the scope of these
notes.
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CHAPTER 5

On compact operators

5.1 Introduction to compact operators
between normed spaces

We had a very brief encounter with compact operators at the end of Section
3.1. For the ease of the reader, we recall their definition. In this section, X
and Y will denote normed spaces, both over F, unless otherwise specified.

Definition 5.1.1. An operator T ∈ L(X, Y ) is called compact if the se-
quence {T (xn)}n∈N has a convergent subsequence in Y whenever {xn}n∈N is
a bounded sequence in X.

We set K(X, Y ) := {T ∈ L(X, Y ) : T is compact }.

To appreciate this definition, the concept of relative compactness for
subsets of a metric space will be helpful.

A subset A of a metric space (Z, d) is called relatively compact in Z
if its closure A is a compact subset of Z. (Some authors say precompact
instead of relatively compact.) Equivalently, and this may be taken as the
definition for our purposes, a subset A of Z is relatively compact in Z if
and only if every sequence in A has a subsequence which converges in Z. In
comparison, we recall that A is compact if and only if every sequence in A
has a subsequence which converges in A.

We also remark that A ⊆ Z is bounded whenever A is relatively compact
in Z: indeed, if A is not bounded, then we can pick (any) z ∈ Z and find a
sequence {an}n∈N in A such that d(an, z) > n for all n ∈ N; it is then rather
easy to see that {an}n∈N has no convergent subsequence in Z, so A is not
relatively compact.

Proposition 5.1.2. Let T ∈ L(X, Y ). Then T is compact if and only if
T (B) is relatively compact in Y whenever B is a bounded subset of X.
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Proof. Assume first that T is compact and let B ⊆ X be bounded. We want
to show that T (B) is relatively compact in Y . So let {yn}n∈N be a sequence
in T (B). For each n ∈ N we may then write yn = T (xn) for some xn ∈ B.
As the sequence {xn}n∈N lies in B, it is bounded. Hence, by compactness of
T , {yn}n∈N = {T (xn}n∈N has a convergence subsequence in Y . Thus, T (B)
is relatively compact, as desired.

Conversely, assume that T maps bounded subsets of X into relatively
compact subsets of Y . We want to show that T is compact. So let {xn}n∈N
be a bounded sequence in X. Set B := {xn : n ∈ N}. Then B is a bounded
subset of X, so T (B) = {T (xn) : n ∈ N} is relatively compact in Y . As
{T (xn)}n∈N is a sequence in T (B), we can conclude that it has a convergent
subsequence in Y . Thus, T is compact, as desired. �

Corollary 5.1.3. Assume T ∈ L(X, Y ) is compact. Then T is bounded.
Thus, K(X, Y ) ⊆ B(X, Y ).

Proof. Set B := X1. Since B is a bounded subset of X, we get from
Proposition 5.1.2 that T (B) is relatively compact subset of Y . This implies
that T (B) is bounded. Hence we can find M > 0 such that ‖T (x)‖ ≤ M
for all x ∈ X1, and it follows that T is bounded with ‖T‖ ≤M . �

As we have seen previously in Section 3.1, cf. Proposition 3.1.9, an
important class of compact operators consists of the finite-rank operators in
B(X, Y ).

Example 5.1.4. Consider X = C([0, 1],R) with the uniform norm ‖ · ‖u.
For g ∈ X, define T (g) : [0, 1]→ R by

[T (g)](s) =
∫ 1

0
sin(s− t) g(t) dt for all s ∈ [0, 1] .

Since sin(s− t) = sin(s) cos(t)− cos(s) sin(t), we have that

[T (g)](s) =
( ∫ 1

0
cos(t) g(t) dt

)
sin(s)−

( ∫ 1

0
sin(t) g(t) dt

)
cos(s)

for all s ∈ [0, 1]. It follows that T (g) ∈ X. Moreover, the map T : X → X
sending g to T (g) is clearly linear. As T (X) is 2-dimensional, T has finite-
rank. Further, since∣∣∣[T (g)](s)

∣∣∣ ≤ ∫ 1

0
| sin(s− t)g(t)| dt ≤

∫ 1

0
|g(t)| dt ≤ ‖g‖u

for all s ∈ [0, 1], we get that ‖T (g)‖u ≤ ‖g‖u for all g ∈ X. Hence, T is
bounded. We can therefore conclude that T is compact.
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More generally, using the Arzelà-Ascoli Theorem (cf. Lindstrøm’s book),
it can be shown that if a function K : [a, b]× [c, d]→ R is continuous, then
the associated integral operator T : C([c, d],R)→ C([a, b],R), defined by

[T (g)](s) =
∫ d

c
K(s, t) g(t) dt for all s ∈ [a, b] ,

is compact.

Theorem 5.1.5. K(X, Y ) is a subspace of B(X, Y ). Moreover, if Y is
a Banach space, then K(X, Y ) is closed in B(X, Y ), and it follows that
K(X, Y ) is a Banach space.

Proof. We leave the proof of the first assertion as an exercise. So assume that
Y is Banach space, and let {Tn}n∈N be a sequence in K(X, Y ) converging
to some T ∈ B(X, Y ). To show that K(X, Y ) is closed in B(X, Y ), we have
to show that T is compact.

So let {xn}n∈N be a bounded sequence in X. Choose M > 0 such that
‖xn‖ ≤M for all n ∈ N.

• Since T1 is compact, there exists a subsequence {xnk
}k∈N of {xn}n∈N

such that T1(xnk
)→ y1 as k →∞ for some y1 ∈ Y .

We set x1,k := xnk
for each k ∈ N. We then have T1(x1,n) → y1 as

n→∞.

• Similarly, since {x1,n}n∈N is bounded and T2 is compact, we can find a
sequence {x2,n}n∈N, which is a subsequence of {x1,n}n∈N, and therefore
of {xn}n∈N, such that T2(x2,n)→ y2 as n→∞ for some y2 ∈ Y .

• Proceeding inductively, for each m ∈ N, m ≥ 2, we can find a sequence
{xm,n}n∈N, which is a subsequence of {xm−1,n}n∈N, and therefore of
{xn}n∈N, such that Tm(xm,n)→ ym as n→∞ for some ym ∈ Y .

We now set x′k := xk,k ∈ X for each k ∈ N, and claim that
{T (x′k)}k∈N is a Cauchy sequence in Y . (5.1.1)

Since Y is complete, we will then be able to conclude that {T (x′k)}k∈N has
a convergent subsequence. As this subsequence will then be a subsequence
of the sequence {T (xn)}n∈N, we will thereby have shown that T is compact.

To establish (5.1.1), we first observe that for any k, l,m ∈ N, we have
‖T (x′l)− T (x′k)‖ ≤ ‖(T − Tm)(x′l) + Tm(x′l)− Tm(x′k) + (Tm − T )(x′k)‖

≤ ‖(T − Tm)(x′l)‖+ ‖Tm(x′l)− Tm(x′k)‖+ ‖(Tm − T )(x′k)‖
≤ ‖T − Tm‖ ‖x′l‖+ ‖Tm(x′l)− Tm(x′k)‖+ ‖Tm − T‖ ‖x′k‖
≤ ‖Tm(x′l)− Tm(x′k)‖+ 2M ‖T − Tm‖ .
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Let then ε > 0 and choose m ∈ N such that ‖T − Tm‖ < ε/3M . By
construction, for each k ≥ m, we have that Tm(x′k) = Tm(xk,k) is an element
of the sequence {Tm(xm,n)}n∈N, which is convergent to ym. It follows that
the sequence {Tm(x′k)}k∈N is convergent, hence that it is Cauchy. So we can
pick N ∈ N such that ‖Tm(x′l)− Tm(x′k)‖ < ε/3 for all k, l ≥ N . This gives
that

‖T (x′l)−T (x′k)‖ ≤ ‖Tm(x′l)−Tm(x′k)‖+2M ‖T−Tm‖ < ε/3+2M (ε/3M) = ε

for all k, l ≥ N . Hence we have shown that the claim (5.1.1) is true.
Finally, as Y is a Banach space, we know that B(X, Y ) is a Banach

space too, and this implies that K(X, Y ), being closed in B(X, Y ), is also a
Banach space. �

An immediate consequence is the following:

Corollary 5.1.6. Assume Y is a Banach space and set

F(X, Y ) := {T ∈ B(X, Y ) : T has finite-rank }.

Then we have
F(X, Y ) ⊆ K(X, Y ).

Example 5.1.7. Let 1 ≤ p < ∞ and set X := `p(N), which we know is
a Banach space w.r.t. ‖ · ‖p. For each λ ∈ `∞(N), we may consider the
multiplication operator Mλ ∈ B(X) given by

[Mλ(x)](n) = λ(n)x(n)

for all x ∈ X and all n ∈ N. One readily checks that ‖Mλ‖ = ‖λ‖∞.
Now, assume that λ ∈ c0(N), i.e., limn→∞ λ(n) = 0. ThenMλ is compact.

Indeed, for each k ∈ N, let λ(k) ∈ `∞(N) be defined by

λ(k)(n) =
λ(n) if 1 ≤ k ≤ n,

0 otherwise,

for every n ∈ N. Then it is clear that each Mλ(k) has finite-rank; moreover,

‖Mλ −Mλ(k)‖ = ‖λ− λ(k)‖∞ → 0 as k →∞.

Thus Mλ ∈ F(X,X) ⊆ K(X,X).
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We set K(X) = K(X,X), so that K(X) is a subspace of B(X). If
X is finite-dimensional, then every operator in B(X) has finite-rank, so
K(X) = B(X). On the other hand, if X is infinite-dimensional, then
K(X) 6= B(X), the reason being that the identity operator IX is not compact
in this case: indeed, if X is infinite-dimensional, then IX(X1) = X1 is closed,
but not compact, (cf. Exercise 3.2).

We also mention (cf. Exercise 5.1) that K(X) is a two-sided ideal in
B(X), meaning that we have

ST ∈ K(X) if S ∈ B(X) and T ∈ K(X), or if S ∈ K(X) and T ∈ B(X).

This property implies that no operator in K(X) can have a bounded inverse
when X is infinite-dimensional (for if T ∈ K(X) has an inverse T−1 ∈ B(X),
then we must have that IX = T−1T ∈ K(X), so dim(X) <∞).

We end this section with an interesting result concerning the possible
eigenvalues of a compact operator.

Theorem 5.1.8. Let T ∈ K(X). Then the following facts hold:
(a) Let δ > 0. Then {λ ∈ F : λ is an eigenvalue of T and |λ| > δ} is a

finite set.
(b) If λ ∈ F is a non-zero eigenvalue of T , then the associated eigenspace

is finite-dimensional.
(c) The set of eigenvalues of T (which may be empty) is countable and

bounded. If this set is countably infinite and {λk : k ∈ N} is an enumeration
of it, then limk→∞ λk = 0.

As we will be mostly interested in compact self-adjoint operators acting
on Hilbert spaces in this course, for which much more can be said (cf.
Theorem 5.3.4), we skip the proof of thi more general theorem.

5.2 On compact operators on Hilbert spaces
In view of Corollary 5.1.6, it is natural to wonder whether any compact
operator from a normed space to a Banach space may be approximated in
operator norm by bounded finite-rank operators. This problem was open
until 1973, when a counterexample was exhibited by P. Enflo. Happily, the
situation is as nice as possible when the target space is a Hilbert space.

Theorem 5.2.1. Let X be a normed space and H be a Hilbert space (both
over F). Then we have

F(X,H) = K(X,H) .
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5. On compact operators

Proof. By Corollary 5.1.6, we only have to show that K(X,H) ⊆ F(X,H).
So let T ∈ K(X,H), and let ε > 0. We need to prove that there exists
S ∈ F(X,H) such that ‖T − S‖ ≤ ε. Clearly, we can assume T 6= 0.

Set A := T (X1). Since X1 is bounded and T is compact, the set A
is compact in H. As H is a metric space, this implies that A is totally
bounded (cf. Proposition 3.5.12 in Lindstrøm’s book). Hence we can cover
A with some open balls B1, . . . , Bn of radius ε/4, having respective centers
a1, . . . , an ∈ A. For each j = 1, . . . , n, we can then find xj ∈ X1 such that
‖aj − T (xj)‖ < ε/4.

Set now F := Span ({T (x1), . . . , T (xn)}), which is a finite dimensional
subspace of H, and let PF denote the orthogonal projection of H on F . Since
the range of PFT is contained in F , PFT has finite-rank, so PFT ∈ F(X,H).
We claim that

‖T − PFT‖ ≤ ε .

Indeed, let x ∈ X1. Then T (x) ∈ A, so T (x) ∈ Bj for some j ∈ {1, . . . , n}.
Hence,

‖T (x)− T (xj)‖ ≤ ‖T (x)− aj‖+ ‖aj − T (xj)‖ < ε/4 + ε/4 = ε/2 .

Further, since T (xj) ∈ F , we have that PF (T (xj)) = T (xj). Thus, using
also that ‖PF‖ = 1, we obtain that

‖(T − PFT )(x)‖ = ‖T (x)− T (xj) + (PFT )(xj)− (PFT )(x)‖
≤ ‖T (x)− T (xj)‖+ ‖PF

(
T (xj)− T (x)

)
‖

≤ ‖T (x)− T (xj)‖+ ‖PF‖‖T (xj)− T (x)‖
= 2 ‖T (x)− T (xj)‖
< 2 · ε/2 = ε .

As this holds for every x ∈ X1, the claim follows. Hence, setting S := PFT ,
we are done. �

Remark 5.2.2. Let X be a normed space and H be a Hilbert space, and
let T ∈ K(X,H). Then it can be shown that T (X) is separable. We leave
this as an exercise.

Theorem 5.2.1 immediately gives:

Corollary 5.2.3. Let H be a Hilbert space. Set K(H) := K(H,H) and
F(H) := F(H,H). Then we have

F(H) = K(H) .
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An application of this result is the following:

Corollary 5.2.4. Let H be a Hilbert space and let T ∈ K(H). Then
T ∗ ∈ K(H). In other words, K(H) is closed under the adjoint operation.

Proof. Using Corollary 5.2.3, we can find a sequence {Tn} in F(H) such
that ‖T − Tn‖ → 0 as n → ∞. Now, it is not difficult to see that F(H)
is closed under the adjoint operation (cf. Exercise 4.18). Hence, {T ∗n } is a
sequence in F(H), and we have

‖T ∗ − T ∗n ‖ = ‖(T − Tn)∗‖ = ‖T − Tn‖ → 0 as n→∞.
Thus, T ∗ ∈ F(H) = K(H). �

We recall from the previous section that if H is finite-dimensional, then
K(H) = B(H) = F(H), while K(H) 6= B(H) if H is infinite-dimensional.
An elementary argument showing that IH is not compact can be given
in this case: letting then {uj}j∈N be any orthonormal sequence in H, we
have ‖uj − uk‖ =

√
2 for all j, k ∈ N, and it follows that the sequence

{IH(uj)}j∈N = {uj}j∈N does not have any convergent subsequence.
Let H be an infinite-dimensional Hilbert space H. An interesting class of

compact operators on H containing F(H) consists of the so-called Hilbert-
Schmidt operators. For simplicity, we only consider the case where H is
separable. We note that every orthonormal basis for H is then countable:
indeed, assume (for contradiction) that H had an uncountable orthonormal
basis B. Then, as ‖u − u′‖ =

√
2 for all distinct u, u′ ∈ B, we see that

any dense subset of H would have to be uncountable, contradicting the
separability of H.

Lemma 5.2.5. Assume H is a separable, infinite-dimensional Hilbert space
(over F). Let B = {uj}j∈N and C = {vj}j∈N be orthonormal bases for H,
and let T ∈ B(H). Then we have

∞∑
j=1
‖T (uj)‖2 =

∞∑
j=1
‖T (vj)‖2 .

Proof. Using Parseval’s identity (two times), we get
∞∑
j=1
‖T (uj)‖2 =

∞∑
j=1

∞∑
k=1

∣∣∣〈T (uj), vk
〉∣∣∣2 =

∞∑
j=1

∞∑
k=1

∣∣∣〈uj, T ∗(vk)〉∣∣∣2
=
∞∑
j=1

∞∑
k=1

∣∣∣〈T ∗(vk), uj〉∣∣∣2 =
∞∑
k=1

∞∑
j=1

∣∣∣〈T ∗(vk), uj〉∣∣∣2
=
∞∑
k=1
‖T ∗(vk)‖2 .
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Note that the change of order of summation at the second but last step
above is allowed since we are dealing with sums of non-negative numbers.
Applying what we have done to the case where B = C, i.e., uj = vj for every
j ∈ N, we get that

∞∑
j=1
‖T (vj)‖2 =

∞∑
k=1
‖T ∗(vk)‖2 .

Thus we obtain that
∞∑
j=1
‖T (uj)‖2 =

∞∑
k=1
‖T ∗(vk)‖2 =

∞∑
j=1
‖T (vj)‖2 ,

as desired. �

Remark 5.2.6. An analogous result is true when H is finite-dimensional
and B, C are orthonormal bases for H.

Definition 5.2.7. Let H be a separable, infinite-dimensional Hilbert space
(over F). An operator T ∈ B(H) is called an Hilbert-Schmidt operator when
we have ∞∑

j=1
‖T (uj)‖2 <∞

for some orthonormal basis B = {uj}j∈N of H, in which case we set

‖T‖2 :=
( ∞∑
j=1
‖T (uj)‖2

)1/2
.

Lemma 5.2.5 shows that the definition of T being a Hilbert-Schmidt operator,
and the value of ‖T‖2, do not depend on the choice of orthonormal basis for
H. We also set

HS(H) := {T ∈ B(H) : T is a Hilbert-Schmidt operator} .

Proposition 5.2.8. Let H be a separable, infinite-dimensional Hilbert space
(over F).

Then HS(H) is a subspace of K(H), which contains F(H) and is closed
under the adjoint operation.

Moreover, the map T → ‖T‖2 is a norm on HS(H), which satisfies

‖T‖ ≤ ‖T‖2

for every T ∈ HS(H).
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Proof. We first note that it is evident from the proof of Lemma 5.2.5 that
T ∗ ∈ HS(H) whenever T ∈ HS(H).

Let B = {uj}j∈N be an orthonormal basis for H, and let T, T ′ ∈ HS(H).
Define ξ, ξ′ ∈ `2(N) by

ξ(j) := ‖T (uj)‖ and ξ′(j) := ‖T ′(uj)‖ for each j ∈ N,

so that ‖ξ‖2 = ‖T‖2 and ‖ξ′‖2 = ‖T ′‖2. Using the triangle inequality, first
in H, and then in `2(N), we get

∞∑
j=1
‖(T + T ′)(uj)‖2 ≤

∞∑
j=1

(
‖T (uj)‖+ ‖T ′(uj)‖

)2
= ‖ξ + ξ′‖2

2

≤ (‖ξ‖2 + ‖ξ′‖2)2 = (‖T‖2 + ‖T ′‖2)2 < ∞ .

This shows that T + T ′ ∈ HS(H) and

‖T + T ′‖2 ≤ ‖T‖2 + ‖T ′‖2 .

Moreover, one easily checks that λT ∈ HS(H) and ‖λT‖2 = |λ| ‖T‖2 for
every λ ∈ F. If ‖T‖2 = 0, then we get that ‖T (uj)‖ = 0 for every j ∈ N,
and this clearly implies that T = 0.

Hence, we have shown so far that HS(H) is a subspace of B(H) which
is closed under the adjoint operation, and that ‖ · ‖2 is a norm on HS(H).

To show that ‖T‖ ≤ ‖T‖2 , let x ∈ H \ {0}. Set v1 = 1
‖x‖x and let

{vj}j≥2 be an orthonormal basis for {x}⊥. Then {vj}j∈N is an orthonormal
basis for H, so we get

‖T (x)‖2 = ‖x‖2 ‖T (v1)‖2 ≤ ‖x‖2
∞∑
j=1
‖T (vj)‖2 = ‖T‖2

2 ‖x‖2 .

Thus, ‖T‖ ≤ ‖T‖2.
Next, we show that T ∈ K(H). For each n ∈ N, let Pn denote the

orthogonal projection of H on Span ({u1, . . . un}) and set Tn := TPn. Then
we have ∞∑

j=1
‖Tn(uj)‖2 =

n∑
j=1
‖T (uj)‖2 <∞ ,

so Tn ∈ HS(H) for each n ∈ N. Hence,

‖T − Tn‖ ≤ ‖T − Tn‖2 =
( ∞∑
j=n+1

‖T (uj)‖2
)1/2
→ 0 as n→∞ .

Since Tn ∈ F(H) for each n, Theorem 5.1.6 gives that T ∈ K(H). Hence,
HS(H) ⊆ K(H).

It only remains to show that F(H) ⊆ HS(H), but we leave this as an
exercise. �
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Remark 5.2.9. For additional properties of HS(H), see Exercise 5.6.

Remark 5.2.10. If H 6= {0} is finite-dimensional and B = {uj}nj=1 is an
orthonormal basis for H, then we get a norm on B(H) by setting

‖T‖2 :=
( n∑
j=1
‖T (uj)‖2

)1/2

(which does not depend on the choice of orthonormal basis for H).
Letting A = [ai,j] denotes the matrix of T w.r.t. B, one readily checks

that
‖T‖2 =

( n∑
i,j=1
|ai,j|2

)1/2
,

i.e., ‖T‖2 coincides with the so-called Fröbenius-norm of A.

Example 5.2.11. Set H = L2([a, b],A, µ), where A denotes the Lebesgue
measurable subsets of a closed interval [a, b] and µ is the Lebesgue measure
on A. Let K : [a, b]× [a, b]→ C be a continuous function and let TK ∈ B(H)
denote the associated integral operator on H, which is the extension of the
integral operator TK : C([a, b])→ C([a, b]) given by

[TK(f)](s) =
∫ b

a
K(s, t) dt for f ∈ C([a, b]) and s ∈ [a, b].

cf. Example 3.3.6 and Exercise 3.18. Then TK is a Hilbert-Schmidt operator
on H (so TK is compact by Proposition 5.2.8).

To show this, we start by picking an orthonormal basis B = {[uj ]}j∈N for
H, where each uj is a continuous functions on [a, b]. (One may for example
construct B by applying the Gram-Schmidt orthonormalization process to
the monomials {tj−1 : j ∈ N}). We note that B := {[ uj ]}j∈N is then also an
orthonormal basis for H.

Let now s ∈ [a, b] and let ks ∈ C([a, b]) be given by ks(t) = K(s, t) for
all t ∈ [a, b]. Note that for each j ∈ N, we have

[TK(uj)](s) =
∫ b

a
K(s, t)uj(t) dt =

∫
[a,b]

ks(t)uj(t) dµ(t) =
〈
[ks], [uj]

〉
.

Moreover, Parseval’s identity gives that

‖ [ks] ‖2 =
( ∞∑
j=1

∣∣∣〈[ks], [uj]
〉∣∣∣2)1/2

.
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Thus, we obtain that
∞∑
j=1

∣∣∣ [TK(uj)](s)
∣∣∣2 =

∞∑
j=1

∣∣∣〈[ks], [uj]
〉∣∣∣2 = ‖ [ks] ‖2

2 .

Now, using this and the Monotone Convergence Theorem, we get
∞∑
j=1
‖TK([uj]) ‖2

2 =
∞∑
j=1

∫
[a,b]

∣∣∣ [TK(uj)](s)
∣∣∣2 dµ(s)

=
∫

[a,b]

( ∞∑
j=1

∣∣∣ [TK(uj)](s)
∣∣∣2) dµ(s)

=
∫

[a,b]
‖ [ks] ‖2

2 dµ(s)

=
∫

[a,b]

( ∫
[a,b]
|ks(t)|2 dµ(t)

)
dµ(s)

=
∫ b

a

∫ b

a
|K(s, t)|2 dt ds <∞,

which shows that TK ∈ HS(H) with ‖TK‖2 ≤
∫ b
a

∫ b
a |K(s, t)|2 ds dt.

In the previous example, one may allow the kernel K to be discontinuous
and still obtain an Hilbert-Schmidt operator TK , as long as K is square-
integrable w.r.t. to the product Lebesgue measure on [a, b]× [a, b]. However,
this requires a better knowledge of measure theory than the one we preassume
in these notes.
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5.3 The spectral theorem for a compact
self-adjoint operator

Throughout this section we let H denote a Hilbert space (over F) different
from {0}. Our main goal is to generalize the spectral theorem for symmetric
real matrices known from linear algebra, and prove that every compact
self-adjoint compact operator T on H is diagonalizable in the sense that
there exists an orthonormal basis for H consisting of eigenvectors of T .

We begin with a series of lemmas.

Lemma 5.3.1. Assume T ∈ K(H) has a nonzero eigenvalue λ ∈ F. Then
the associated eigenspace Eλ := ker(T − λI) is finite-dimensional.

Proof. Assume for contraction that Eλ is infinite-dimensional. We may then
find a sequence {vn}n∈N of unit vectors in Eλ which are pairwise orthogonal.
By compactness of T , {T (vn)}n∈N has a convergent subsequence. So we may
as well assume that {T (vn)}n∈N is convergent, hence that it is a Cauchy
sequence. However, we have that

‖T (vn)− T (vm)‖2 = ‖λ vn − λ vm‖2 = 2 |λ|2 6= 0

for all m,n ∈ N. So {T (vn)}n∈N is not a Cauchy sequence, giving a contra-
diction. �

Lemma 5.3.2. Let T ∈ B(H) be self-adjoint, and assume T has an eigen-
value λ ∈ F. Then λ ∈ R.

Moreover, if λ′ is an eigenvalue of T distinct from λ, then Eλ ⊥ Eλ′,
i.e., 〈x, y〉 = 0 whenever x ∈ Eλ and y ∈ Eλ′.

Proof. Let x ∈ Eλ. If ‖x‖ = 1, then we have

λ = λ 〈x, x〉 = 〈λx, x〉 = 〈T (x), x〉 ∈ WT ⊆ R ,

so λ ∈ R. Moreover, assume that λ′ is an eigenvalue of T distinct from λ,
and let y ∈ Eλ′ . Then we have that λ′ ∈ R, so

λ 〈x, y〉 = 〈T (x), y〉 = 〈x, T (y)〉 = λ′ 〈x, y〉 .

Since λ′ 6= λ, we get that 〈x, y〉 = 0. �

Lemma 5.3.3. Let T ∈ K(H) be self-adjoint. Then T has an eigenvalue
λ ∈ R such that |λ| = ‖T‖.
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Proof. If T = 0, then the assertion is trivial. So assume that T 6= 0. Using
Theorem 4.4.9, we can find a sequence {xn}n∈N of unit vectors in H such
that |〈T (xn), xn〉| → ‖T‖ as n→∞. Since 〈T (xn), xn〉 ∈ R for every n, we
can assume (by passing to a subsequence and relabelling) that

〈T (xn), xn〉 → λ as n→∞, where λ = ±‖T‖. (5.3.1)

Moreover, since T is compact, we can also assume (by passing again to a
subsequence and relabelling) that T (xn) → y as n → ∞ for some y ∈ H.
Note that the Cauchy-Schwarz inequality gives that∣∣∣〈T (xn), xn〉

∣∣∣ ≤ ‖T (xn)‖ for every n ∈ N,

so, letting n→∞, we get that ‖y‖ ≥ |λ| > 0, so y 6= 0.
Now, using that T is self-adjoint, λ is real, ‖xn‖ = 1, and (5.3.1), we get

‖T (xn)− λxn‖2 =
〈
T (xn)− λxn, T (xn)− λxn

〉
= ‖T (xn)‖2 − 2λ 〈T (xn), xn〉+ λ2‖xn‖2

≤ ‖T‖2 − 2λ 〈T (xn), xn〉+ λ2

= 2λ
(
λ− 〈T (xn), xn〉

)
→ 0 as n→∞.

Thus, ‖T (xn)− λxn‖ → 0 as n→∞, and this gives that

‖y − λxn‖ ≤ ‖y − T (xn)‖+ ‖T (xn)− λxn‖ → 0 as n→∞.

Hence,
T (y) = lim

n→∞
T (λxn) = λ lim

n→∞
T (xn) = λ y .

Since y 6= 0, λ is an eigenvalue of T , as we wanted to show.
�

We are now ready for the spectral theorem for a compact self-adjoint
operator T . Intuitively, we could hope to be able to construct an orthonormal
basis of eigenvectors for T by using Lemma 5.3.3 repeatedly as follows. Start
by picking a unit eigenvector v0 of T associated to the eigenvalue λ0 = ±‖T‖.
Next, consider the restriction T1 of T to {v0}⊥, and pick a unit eigenvector
v1 of T1 associated to the eigenvalue λ1 = ±‖T1‖. Then continue this process
inductively. There are several technicalities involved in working out the
details of this approach. We will follow a more pedestrian route, which also
provides more information about T .
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Theorem 5.3.4. Let T ∈ K(H) be self-adjoint. Then there exists an
orthonormal basis E for H which consists of eigenvectors of T .

More precisely, the following facts hold when T 6= 0:

(a) The set L consisting of all nonzero eigenvalues of T is a nonempty,
countable subset of the interval

[
−‖T‖, ‖T‖

]
, containing ‖T‖ or −‖T‖.

(b) If L is countably infinite, and {λk : k ∈ N} is an enumeration of L,
then we have limk→∞ λk = 0.

(c) The eigenspace Eλ := ker(T −λI) is finite-dimensional for each λ ∈ L.

(d) For each λ ∈ L, let Eλ be an orthonormal basis for Eλ, and set

E ′ :=
⋃
λ∈L
Eλ .

Then E ′ is an orthonormal basis for T (H) = ker(T )⊥, which is count-
able.

(e) If ker(T ) = {0}, set E0 := ∅ ; otherwise, let E0 be an orthonormal
basis for ker(T ). Then E := E0 ∪ E ′ is an orthonormal basis for H
which consists of eigenvectors of T .

(f) Let Pλ denote the orthogonal projection of H on Eλ for each λ ∈ L.
Then PλPλ′ = 0 whenever λ 6= λ′ belong to L. Moreover, T has a
spectral decomposition

T =
∑
λ∈L

λPλ (w.r.t. operator norm), (5.3.2)
meaning that

– T = ∑
λ∈L λPλ if L is finite ;

– limn→∞ ‖T −
∑n
k=1 λk Pλk

‖ = 0 if L is countably infinite
and {λk : k ∈ N} is an enumeration of L, as in (b).

Proof. We can clearly assume that T 6= 0.
(a): The set L is a subset of R by Lemma 5.3.2, which contains ‖T‖ or

−‖T‖ by Lemma 5.3.3. If λ ∈ L, and v is an associated eigenvector in H1,
we have

|λ| = |〈λv, v〉| = |〈T (v), v〉| ≤ ‖T‖ .
Thus, L ⊆ [−‖T‖, ‖T‖]

To show that L is countable, let ε > 0 and consider the subset of L given
by Lε := {λ ∈ L : |λ| ≥ ε}. Then Lε is finite.
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Indeed, assume Lε is nonempty. Then for each λ ∈ L, we can pick
vλ ∈ H1 such that T (vλ) = λvλ; for λ, λ′ ∈ Lε, λ 6= λ′, we then have
λvλ ⊥ λ′vλ′ by Lemma 5.3.2, so we get

‖T (vλ)− T (vλ′)‖2 = ‖λvλ − λ′vλ′‖2 = |λ|2 + |λ′|2 ≥ 2ε2 .

Hence, if Lε was infinite, we could find a sequence in H1 which T maps into
a sequence with no convergent subsequence, contradicting the compactness
of T . Thus, Lε is finite.

Now, since L = ⋃
n∈N L1/n, it follows that L is countable.

(b): Assume L is countably infinite and {λk : k ∈ N} is an enumeration
of L. Let ε > 0 be given. Then, as in (a), we get that the set K := {k ∈ N :
|λk| ≥ ε} is finite. So there exists N ∈ N such that K ⊆ {1, . . . , N}. For
every k ≥ N + 1, we then have |λk| < ε. This shows that limk→∞ λk = 0.

(c): This is a consequence of Lemma 5.3.1.
(d): We first remark that since T is self-adjoint, we have

T (H) = T ∗(H) = (kerT )⊥.

Next, it follows from Lemma 5.3.2 that Eλ ⊥ Eλ′ whenever λ 6= λ′ belong to
L. So it is clear that E ′ is an orthonormal set in H, which is countable since
each Eλ is finite and L is countable. Hence, E ′ is a countable orthonormal
basis for M := Span (E ′), and it remains only to show that M = ker(T )⊥,
i.e., that M⊥ = ker(T ).

• ker(T ) ⊆M⊥: Assume y ∈ ker(T ). Then for each λ ∈ L and v ∈ Eλ,
we have

λ 〈v, y〉 = 〈T (v), y〉 = 〈v, T (y)〉 = 〈v, 0〉 = 0 .

Since λ 6= 0, this shows that y ∈ (E ′)⊥ = M⊥.

• M⊥ ⊆ ker(T ): It is easy to check that M is invariant under T . Hence,
M⊥ is invariant under T ∗ = T (cf. Exercise 4.19). We may therefore
consider the restriction S of T to M⊥. Then S ∈ K(M⊥): if not, then
there would exist a bounded sequence in M⊥, hence in H, which is
mapped by S, hence by T , to a sequence with no convergent subse-
quence, contradicting the compactness of T . Moreover, S is self-adjoint
(this is an easy exercise).
Now, assume that S 6= 0. Then Lemma 5.3.3 gives that S has an
nonzero eigenvalue µ. This implies that µ is a nonzero eigenvalue of T ,
i.e., µ ∈ L. But if v ∈M⊥ is an eigenvector for S associated with µ,
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5. On compact operators

we then have that v ∈ Eµ ⊆M , so v ∈M ∩M⊥ = {0}, contradicting
that v 6= 0 (since v is an eigenvector).
This means that S has to be 0. Thus we get T (y) = S(y) = 0 for all
y ∈M⊥, as desired.

(e): If ker(T ) = {0}, then we get from (d) that E = E ′ is an orthonormal
basis for ker(T )⊥ = {0}⊥ = H. If ker(T ) 6= {0}, then we have E0 ⊆ ker(T )
and E ′ ⊆ ker(T )⊥, so it is clear that E is an orthonormal set. Moreover, we
have that

H = Span (E) .
Indeed, let x ∈ H. Then we may write

x = xM + xM⊥ ,

where xM ∈ M = Span (E ′) and xM⊥ ∈ M⊥ = ker(T ) = Span (E0). So
we may choose {xn}n∈N ⊆ Span (E ′) and {yn}n∈N ⊆ Span (E0) such that
limn→∞ xn = xM and limn→∞ yn = xM⊥ . This gives that

lim
n→∞

(xn + yn) = xM + xM⊥ = x .

Hence, x ∈ Span (E). This shows that E is an orthonormal basis for H.
(f): The first assertion follows readily from the fact that Eλ ⊥ Eλ′

whenever λ 6= λ′, cf. Lemma 5.3.2. Next, we consider the case where L is
countably infinite and {λk : k ∈ N} is an enumeration of L, leaving the
easier case where L is finite to the reader.

For each k ∈ N, set nk := dim(Eλk
) < ∞, and let {vk,1, . . . , vk,nk

} be
an enumeration of E ′λk

. Then we have

E ′ =
⋃
k∈N
E ′λk

= {vk,l : k ∈ N, 1 ≤ l ≤ nk}.

Consider x ∈ H. Since T (x) ∈ T (H) and E ′ is an orthonormal basis for
T (H), we get from Corollary 4.2.11 that

T (x) = lim
m→∞

m∑
k=1

nk∑
l=1
〈T (x), vk,l〉 vk,l = lim

m→∞

m∑
k=1

nk∑
l=1
〈x, T (vk,l)〉 vk,l

= lim
m→∞

m∑
k=1

λk
( nk∑
l=1
〈x, vk,l〉 vk,l

)
=
∞∑
k=1

λk Pλk
(x) .

Let now ε > 0. We have to show that there exists N ∈ N such that
‖T −∑n

k=1 λk Pλk
‖ ≤ ε for all n ≥ N .
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5.3. The spectral theorem for a compact self-adjoint operator

Using (b), we can choose N ∈ N such that |λk| < ε for all k > N .
Then for all n ≥ N and all x ∈ H, using continuity of the norm in H and
Pythagoras’ identity, we get

∥∥∥(T − n∑
k=1

λk Pλk

)
(x)
∥∥∥2

=
∥∥∥ ∞∑
k=n+1

λk Pλk
(x)
∥∥∥2

=
∞∑

k=n+1
|λk|2 ‖Pλk

(x)‖2

≤ ε2
∞∑

k=n+1
‖Pλk

(x)‖2 ≤ ε2 ‖x‖2

and the assertion follows.
�

Remark 5.3.5. Let us say that an operator T ∈ B(H) is diagonalizable if
there exists an orthonormal basis for H whose elements are eigenvectors
for T . The spectral theorem says that T is diagonalizable if T is compact
and self-adjoint. A more precise statement is as follows. We recall that
T ∈ B(H) is called normal if T ∗ commutes with T .

Assume that T ∈ K(H). If F = R, then T is diagonalizable if and only
if T is self-adjoint. On the other hand, if F = C, then T is diagonalizable if
and only if T is normal.

We leave the proof to the reader (cf. Exercises 5.13 and 5.14).

As a corollary of the spectral theorem, an analogue of the singular value
decomposition for matrices may be obtained for compact operators.

Indeed, let S ∈ K(H), S 6= 0. Then T := S∗S is self-adjoint and
compact, and T 6= 0 (as ‖T‖ = ‖S∗S‖ = ‖S‖2 6= 0). Hence, the spectral
theorem gives that we may find a countable orthonormal basis {vj}j∈N for
T (H) = ker(T )⊥ = ker(S∗S)⊥ = ker(S)⊥ consisting of eigenvectors for T .
For each j ∈ N , let µj denote the eigenvalue of T associated with vj. Note
that

µj =
〈
µj vj, vj

〉
=
〈
T (vj), vj

〉
=
〈
S(vj), S(vj)

〉
= ‖S(vj)‖2 ≥ 0

for every j ∈ N . Since each µj is nonzero, we get that all µj’s are positive.
For each j ∈ N , set

σj := √µj > 0 and uj := 1
σj
S(vj) .
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The σj’s are called the singular values of S. For all j, k ∈ N we have〈
uj, uk

〉
= 1
σjσk

〈
S(vj), S(vk)

〉
= 1
σjσk

〈
T (vj), vk

〉

= µj
σjσk

〈
vj, vk

〉
=
1 if j = k,

0 otherwise,

so {uj : j ∈ N} is an orthonormal set in the range of S. Further, we have
the following decomposition of S:

S(x) =
∑
j∈N

σj 〈x, vj〉uj for all x ∈ H . (5.3.3)

Indeed, let x ∈ H and set M := T (H), so M⊥ = ker(S).
With z := x− PM(x) ∈M⊥, we get that

x = PM(x) + z =
∑
j∈N
〈x, vj〉 vj + z ,

so
S(x) =

∑
j∈N
〈x, vj〉S(vj) + S(z) =

∑
j∈N

σj 〈x, vj〉uj,

as asserted in (5.3.3).
It readily follows that {uj : j ∈ N} is an orthonormal basis for S(H).

Finally we remark that the spectral theorem also gives that σj = √µj → 0
as j →∞ when N is countably infinite, and that

‖S‖ = ‖T‖1/2 = max{µj : j ∈ N}1/2 = max{σj : j ∈ N} .

5.4 Application: The Fredholm Alternative
A useful application of linear algebra, and one of its original motivation,
is the study of systems of linear equations, i.e., of equations of the type
Ax = b, where A ∈Mm×n(F), b ∈ Fm and the (unknown) vector x belongs
to Fn. More generally, one may consider equations of the form

T (v) = w (5.4.1)

where V,W are vector spaces (over F), T ∈ L(V,W ), w ∈ W and the
(unknown) vector x belongs to V . Whether such an equation is consistent,
i.e., has some solution(s), relies on whether w lies in the range of T , in which
case it follows readily that the solution set of (5.4.1) is given by

v0 + ker(T ) :=
{
v0 + u | u ∈ ker(T )

}
(5.4.2)
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5.4. Application: The Fredholm Alternative

where v0 ∈ V is any vector satisfying (5.4.1), i.e., such that T (v0) = w.
In the rest of this section, we consider the case where V = W = H is a

Hilbert space (6= {0}), and T ∈ B(H). We can then exploit the relationship
between the fundamental subspaces of T and T ∗, cf. Proposition 4.3.8.

For example, using that T (H) = ker(T ∗)⊥, we get that if T has closed
range (i.e., T (H) is closed), then (5.4.1) will be consistent if and only if w
is orthogonal to ker(T ∗).

In particular, if T has closed range and ker(T ∗) = {0} (i.e., T ∗ is one-to-
one), then T must be surjective, hence (5.4.1) is consistent for all w ∈ H.
Similarly, if T ∗ has closed range and ker(T ) = {0}, then it follows that T ∗
is surjective, so the equation T ∗(v′) = w′ is consistent for all w′ ∈ H.

On the other hand, if it happens that T is surjective, then we get that
ker(T ∗) = {0}, hence that the equation T ∗(v′) = w′ will have either no
solution or a unique solution. Similarly, if T ∗ is surjective, then ker(T ∗) =
{0}, and (5.4.1) will have either no solution or a unique solution.

A problem is that many bounded operators do not have a closed range.
Moreover, in general, it may be a difficult task to decide whether the range
of some given T ∈ B(H) is closed or not. However, we note that if T ∈ B(H)
has finite-rank, then it has closed range (as T (H) is finite-dimensional).
In the case where H is finite-dimensional, much more can be said. The
following terminology will be useful.

Definition 5.4.1. An operator F ∈ B(H) is said to satisfy the Fredholm
alternative if one of the following two (mutually exclusive) situations occurs:

(a) ker(F ) = ker(F ∗) = {0}, and the equations F (v) = w, F ∗(v′) = w′

have both a unique solution for all w,w′ ∈ H;

(b) 1 ≤ dim(ker(F )) = dim(ker(F ∗)) < ∞, the equation F (v) = w is
consistent if and only if w ∈ ker(F ∗)⊥, and the equation F ∗(v′) = w′

is consistent if and only if w′ ∈ ker(F )⊥.

Example 5.4.2. Assume that H is finite-dimensional and F ∈ B(H), i.e.,
F ∈ L(H). Then F satisfies the Fredholm alternative.

The crux is that we have dim(ker(F ∗)) = dim(ker(F )). To show this,
we use the formula

dim(M) + dim(M⊥) = dim(H),

which is easily verified for any subspace M of H, and the dimension formula
for F . We get that

dim(ker(F ∗)) = dim(F (H)⊥) = dim(H)− dim(F (H)) = dim(ker(F )).

97



5. On compact operators

Combining this fact with our previous observations in this section, it is
straightforward to deduce that either (a) or (b) in Definition 5.4.1 holds.

An important class of bounded operators satisfying the Fredholm alter-
native consists of operators of the form F = T − µI, where T is a compact
operator on H and µ ∈ F \ {0}. In the special case where T = TK is an inte-
gral operator, cf. Example 5.2.11, an equation of the form (TK −µI)(f) = g,
i.e., TK(f) − µf = g, is often called a Fredholm integral equation of the
second kind.1

Consider T ∈ K(H) and µ ∈ F \ {0}. Then it can be shown that the
following facts hold:

(i) T − µI has closed range;

(ii) dim(ker(T − µI)) = dim(ker((T − µI)∗)) <∞.

Since T ∗ is compact, we also get that T ∗ − µI = (T − µI)∗ has closed
range. Using these properties, and the general principles outlined before,
one readily arrives at the conclusion that F = T − µI satisfies the Fredholm
alternative, as asserted above. We don’t have time in this course to prove
that (i) and (ii) hold. Instead, we will illustrate how the spectral theorem
for compact self-adjoint operators can be applied to give a direct proof of
the following:

Theorem 5.4.3. Assume T ∈ K(H) is self-adjoint and µ ∈ F \ {0}. Then
F = T − µI satisfies the Fredholm alternative.

Proof. Assume first that µ is not an eigenvalue of T , i.e., ker(T −µI) = {0}.
Then the spectral theorem implies that the equation (T − µI)(x) = y
has a unique solution for all y ∈ H. (You are asked to check this in
Exercise 5.9.) Thus, F = T − µI is surjective, and this implies that
ker(F ∗) = ker(T − µI) = {0}, i.e., µ is not an eigenvalue of T . Arguing as
above, we get that the equation (T − µI)(x′) = y′, i.e., (T − µI)∗(x′) = y′

has a unique solution for all y′ ∈ H. This shows that (a) in Definition 5.4.1
holds in this case.

Next, assume that µ is an eigenvalue of T , i.e., ker(T −µI) 6= {0}. Then
µ ∈ R, so F ∗ = F . Moreover, as µ 6= 0, we have that T 6= 0, and the spectral
theorem tells us that 1 ≤ dim(ker(F )) = dim(ker(T − µI)) <∞. Hence,
to show that (b) in Definition 5.4.1 holds, it remains only to prove that the

1Such equations, and Fredholm integral equations of the first kind (i.e., equations of
the form TK(f) = g), were studied by I. Fredholm at the beginning of the 20th century.
They arise in some practical problems in signal theory and in physics.
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equation F (x) = y is consistent if and only if y ∈ ker(F )⊥. This means that
we have to prove that the equation

T (x)− µx = y (5.4.3)

is consistent if and only if 〈y, z〉 = 0 for all z ∈ Eµ := ker(T − µI).
To prove this, let E ′ = {uj}j∈J be an enumeration of the orthonormal

basis for T (H) obtained in the spectral theorem for T , and let µj ∈ R \ {0}
denote the eigenvalue of T corresponding to each uj.

Since H is the direct sum of ker(T ) and ker(T )⊥ = T (H), we may write
y ∈ H as

y = y0 +
∑
j∈J
〈y, uj〉uj,

where y0 denote the orthogonal projection of y onto ker(T ). Likewise, we
may assume that the (unknown) vector x in equation (5.4.3) is written as

x = x0 +
∑
j∈J

cj uj,

where x0 ∈ ker(T ) and {cj}j∈J ∈ `2(J) are to be determined, if possible.
Plugging this into equation (5.4.3), we get the equivalent equation

−µx0 +
∑
j∈J

(µj − µ) cj uj = y0 +
∑
j∈J
〈y, uj〉uj.

Clearly, we can set x0 := (−1/µ) y0, and equation (5.4.3) is then consistent
if and only if the sequence {cj}j∈J ∈ `2(J) can be chosen so that

(µj − µ) cj = 〈y, uj〉 for all j ∈ J. (5.4.4)

Now, as µ is a nonzero eigenvalue of T , we have that µ = µk for some k ∈ J .
Let uj1 , . . . , ujn denote the vectors in E ′ giving an orthonormal basis for
Eµ = Eµk

. If j 6∈ {j1, . . . , jn}, we have µj 6= µ, so

cj := 1
µj − µ

〈y, uj〉

will satisfy (5.4.4) for every such j.
On the other hand, if j ∈ {j1, . . . , jn}, we have µj − µ = 0. Hence,

(5.4.4) will be satisfied for j = j1, . . . , jn if and only if we have 〈y, uj〉 = 0
for j = j1, . . . , jn, i.e., if and only if 〈y, z〉 = 0 for all z ∈ Eµ. Moreover,
when this condition holds, we can choose cj1 , . . . , cjn freely and, regardless
of this choice, the constructed sequence {cj}j∈J is easily seen to belong to
`2(J) (exercise: check this!), meaning that the associated vector x gives a
solution to (5.4.3). Thus, we have proved the desired equivalence. �

99



5. On compact operators

5.5 Exercises
Exercise 5.1. Let X, Y, Z denote normed spaces over F. Consider λ ∈ F,
T, T ′ ∈ B(X, Y ) and S ∈ B(Y, Z), so ST ∈ B(X,Z).

a) Show that λT + T ′ ∈ K(X, Y ) if T, T ′ ∈ K(X, Y ).
b) Show that ST ∈ K(X,Z) if T ∈ K(X, Y ).
c) Show that ST ∈ K(X,Z) if S ∈ K(Y, Z).
d) Set K(X) = K(X,X). Deduce that
ST ∈ K(X) if S ∈ B(X) and T ∈ K(X), or if S ∈ K(X) and T ∈ B(X).

Exercise 5.2. Let X = `p(N), λ ∈ `∞(N), and Mλ ∈ B(X) be the
associated multiplication operator, cf. Example 5.1.7.

Show that λ ∈ c0(N) if Mλ is compact.
(It therefore follows that Mλ is compact if and only if λ ∈ c0(N).)

Exercise 5.3. Let X be a normed space, H be a Hilbert space, and let
T ∈ K(X,H). Show that T (X) is separable.

Exercise 5.4. Let H be an infinite-dimensional Hilbert space and let
T ∈ K(H). Show that

〈
T (un), un

〉
→ 0 as n → ∞ whenever {un}n∈N

is an orthonormal sequence in H.

Exercise 5.5. Let H be a Hilbert space and let P ∈ B(H) be a projection
(i.e. P 2 = P ). Show that P has finite-rank if (and only if) P is compact.

Exercise 5.6. Let H be a separable Hilbert space, H 6= {0}.
a) Show that F(H) ⊆ HS(H), and that F(H) is dense in HS(H)

w.r.t. ‖ · ‖2.
b) Assume that T ∈ HS(H) and S ∈ B(H). Show that both ST and

TS belong to HS(H), and that we have

‖ST‖2 ≤ ‖S‖ ‖T‖2 , ‖TS‖ ≤ ‖T‖2 ‖S‖ .

c) Let B = {uj}j∈J be an orthonormal basis for H, where J = {1, . . . , n}
if dim(H) = n <∞, while J = N otherwise.

For T, T ′ ∈ HS(H), set〈
T, T ′

〉
2

:=
∑
j∈J

〈
T (uj), T ′(uj)

〉
.

Show that this gives a well-defined inner product on HS(H), and check that
the associated norm is the Hilbert-Schmidt norm ‖ · ‖2.
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d) Show that HS(H) is complete w.r.t. ‖ · ‖2, so that HS(H) is a Hilbert
space w.r.t. the inner product from c).

Exercise 5.7. LetH = L2(R,A, µ) whereA denote all Lebesgue measurable
subsets of R and µ is the Lebesgue measure. For which f ∈ L∞ is the
multiplication operator Mf ∈ B(H) compact ?

Exercise 5.8. Let H be a Hilbert space, T ∈ K(H) and λ ∈ F, λ 6= 0.
Assume that there exists a sequence {xn}n∈N of unit vectors in H such that
‖T (xn)− λxn‖ → 0 as n→∞. Show that λ is an eigenvalue of T .

Exercise 5.9. Let H be a Hilbert space, and let T ∈ K(H) be self-adjoint.
Assume µ ∈ F, µ 6= 0 is not an eigenvalue of T , i.e. T − µIH is injective.

Let y ∈ H, let E ′ = {uj}j∈J be an enumeration of the orthonormal basis
for M = T (H) obtained in the spectral theorem for T , and let µj 6= 0 denote
the eigenvalue of T corresponding to uj.

a) Show that the series

∑
j∈J

〈y, uj〉
µj − µ

uj

converges to some h ∈ H.

b) Set z := y − PM(y) and x := h− 1
µ
z. Show that (T − µIH)(x) = y.

c) Deduce that T − µIH is surjective (hence that it is bijective).

Exercise 5.10. Consider H = L2([−π, π]) (with respect to the normalized
Lebesgue measure). Let g ∈ C([−π, π]) be periodic, i.e. satisfies that
g(−π) = g(π), and extend g to a periodic function g̃ on R with period 2π.
Define G : [−π, π]× [−π, π]→ C by G(s, t) = g̃(s− t).

a) Check that G is continuous, so that the associated integral operator
TG belongs to HS(H) (hence is compact).

c) Decide when TG is self-adjoint.

b) Let k ∈ Z and recall that ek(t) = eikt for all t ∈ [−π, π]. Check that
ek is an eigenvector for the operator TG. Deduce that TG is diagonalizable
(with respect to {ek}k∈Z).

c) Show that ‖TG‖2 = ‖g‖2 =
(

1
2π
∫ π
−π |g(t)|2 dt

)1/2
.
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Exercise 5.11. Consider H = L2([0, 1]) (with respect to Lebesgue measure)
and the integral operator TK ∈ B(H) associated with K(s, t) := min(s, t)
for all (s, t) in [0, 1]× [0, 1], cf. Example 5.2.11.

a) Explain why TK is self-adjoint and compact. Then check that the set
U := {[un] : n ∈ N}, where

un(t) :=
√

2 sin
(
(n− 1

2)π t
)

for all t ∈ [0, 1], n ∈ N ,

is an orthonormal set of eigenvectors for TK .
b) It can be shown that U is an orthonormal basis for H. Is it possible

to deduce this from a) and the spectral theorem for TK ?

Exercise 5.12. Let S, T ∈ B(H).
a) Assume there exists an orthonormal basis for H whose elements are

eigenvectors for both S and T . Check that S commutes with T .
b) Assume S and T are compact and self-adjoint, and that S commutes

with T . Show that there exists an orthonormal basis for H whose elements
are eigenvectors for both S and T .

Hint: Start by considering an eigenvalue λ of T and study how S acts
on the corresponding eigenspace ET

λ .

Exercise 5.13. Assume H is a Hilbert space over R, and let T ∈ B(H).
a) Assume that T is diagonalizable (as defined in Remark 5.3.5). Check

that T is self-adjoint.
b) Let T be compact. Deduce that T is diagonalizable if and only if T is

self-adjoint.

Exercise 5.14. Assume H is a Hilbert space over C, and let T ∈ B(H).
a) Assume that T is diagonalizable (as defined in Remark 5.3.5). Check

that T is normal.
b) Show that T is normal if and only if Re(T ) and Im(T ) commutes

with each other.
c) Let T be compact. Show that T is diagonalizable if and only if T is

normal.
Hint: The implication (⇒) follows from a). For (⇐), use b) and Exercise

5.12 b).
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Exercise 5.15. Let H be a separable Hilbert space with a countably infinite
orthonormal basis B = {vj}j∈N. Let {µj}j∈N be a bounded sequence in F
and let D ∈ B(H) denote the associated diagonal operator (w.r.t. B).

a) Show that D is compact if and only if limj→∞ µj = 0.

(Note: If you have looked at Example 5.1.7 and solved Exercise 5.2, this
should not be difficult).

b) Show that D is Hilbert-Schmidt if and only if {µj}j∈N ∈ `2(N), in
which case we have ‖D‖2 =

(∑∞
j=1 |µj|2

)1/2
.

Exercise 5.16. Let H be a separable Hilbert space of infinite dimension
and let T ∈ K(H) be selfadjoint, T 6= 0. Assume that you have found an
orthonormal basis B = {vj}j∈N for H consisting of eigenvectors for T , and
let µj ∈ R denote the eigenvalue of T corresponding to each vj.

a) Show that the sequence {µj}j∈N is bounded, hence that T is the
diagonal operator (w.r.t. B) associated with this sequence. Deduce from the
previous exercise that limj→∞ µj = 0.

b) As in the spectral theorem, set

L := {λ ∈ R | λ is a nonzero eigenvalue of T}.

Set also
L̃ := {λ ∈ R | λ is an eigenvalue of T},

so L = L̃ \ {0}. Show the following assertions:

(i) L̃ = {µj | j ∈ N} and L = {µj | j ∈ N, µj 6= 0}.

(ii) If λ ∈ L and Nλ := {j ∈ N | µj = λ}, then Nλ is a finite subset of N
and {vj | j ∈ Nλ} is an o.n.b. for Eλ.

(iii) If µj 6= 0 for all j ∈ N, then ker(T ) = {0}.

(iv) If N0 := {j ∈ N | µj = 0} is nonempty, then {vj | j ∈ N0} is an
o.n.b. for ker(T ).

Exercise 5.17. Let H = L2([0, 1]) (with usual Lebesgue measure) and let
T = Mf be the self-adjoint operator in B(H) given by multiplication with
the function f(t) = t on [0, 1], cf. Example 4.4.4.

Show that T (H) is not closed, i.e., that T does not have closed range.
Show also that T is not compact.
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5. On compact operators

Exercise 5.18. Let H = `2(N), let λ ∈ `∞(N) be given by λ(n) = 1
n
for

all n ∈ N, and let T = Mλ ∈ B(H) denote the associated multiplication
operator. Note that T is compact, as follows from Example 5.1.7.

Show that T (H) = H and T (H) 6= H, so T does not have closed range.

Exercise 5.19. Let H be a Hilbert space and T ∈ B(H). Let us say that T
is bounded from below if there exists some α > 0 such that α ‖x‖ ≤ ‖T (x)‖
for all x ∈ H. For example, T is bounded from below when T is an isometry.

Show that if T is bounded from below, then T has closed range.

Exercise 5.20. Finish the proof of Theorem 5.9 by checking that the
sequence {cj}j∈J constructed in the final paragraph (under the assumption
that y is orthogonal to Eµ) belongs to `2(J).
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